

Shiraz University Faculty of Sciences

Ph.D. Dissertation in Organic Chemistry

NEW APPROACHES TO C-S BOND FORMATION USING THIOLIC AND NON-THIOLIC PRECURSORS

By MOHAMMAD ABBASI

Supervised by Professor Habib Firouzabadi

JULY 2009

IN THE NAME of GOD

In the Name of God

DECLARATION

Hereby, Mohammad Abbasi (832781) student of Organic Chemistry College of Sciences certify that this thesis results from my own research and whenever I have utilized other sources, I have clearly reference them. I also declare that the research and the title of my thesis are novel and I promise, without the permission from the university, the results never be published or bring to someone else. The copyright of this thesis is the property of Shiraz University.

> Name and Surname: Mohammad Abbasi Date and Signature: 9-19-2009 M. Abbasi

IN THE NAME OF GOD

NEW APPROACHES TO C-S BOND FORMATION USING THIOLIC AND NON-THIOLIC PRECURSORS

BY:

MOHAMMAD ABBASI

THESIS

SUBMITTED TO THE SCHOOL OF GRADUATE STUDIES IN PARTIAL FULLFILMENT OF THE REQUIREMENT FOR THE DEGREE OF DOCTER OF PHILOSOPHY (Ph.D.)

IN

ORGANIC CHEMISTRY SHIRAZ UNIVERSITY SHIRAZ, I. R. IRAN

EVALUTED AND APPROVED BY THESIS COMMITTEE AS: EXCELLENT

ban 20 0110

.. H. Firouzabadi, Ph.D., Prof. of Chemistry (Chairman)
.. N. Iranpoor, Ph.D., Prof. of Chemistry
. A. A. Jarrahpour, Ph.D., Assoc. Prof. of Chemistry
. P. Salehi, Ph.D., Prof. of Chemistry (Shahid Beheshti University)

JULY 2009

Dedicated to:

My Family Specially My Dear Son,

Ali Reza

On the Occasion of His 4th Birthday

And

My Teachers

Prof. Habib Firouzabadi & Prof. Nasser Iranpoor

AKNOWLEDGEMENTS

I would like to express my deepest gratitude to my advisor, Professor H. Firouzabadi, for his support and helpful guidance throughout the research. His continued support led me to the right way.

I gratefully thank to Prof N. Iranpoor for his valuable comments and constant supports through out my education.

I would also like to extend my appreciation to my committee members: Prof. Peyman Salehi and Dr. Ali Asghar Jarrahpour for reviewing and revising of the thesis.

I am also thankful to Prof. Firouzabadi and Prof. Iranpoor's research group and all my friends, especially Dr. Reza Khalifeh, Dariush Khalili and Maaroof Zarei for their sincerity and cooperation. I am also indebted to my dear friend, Dr. Abdol Hamid Fadavi, for technical assistance.

I am particularly indepted to Persian Gulf University for giving me this good opportunity to study in Ph.D. course.

Finally, I want to special thank my family for their love, encouragement, and advice.

ABSTRACT

New approaches to C-S bond formation using thiolic and non-thiolic precursors

BY:

Mohammad Abbasi

In this thesis we have introduced two odorless, one-pot methods for preparing thia-Michael adducts from non-thiolic precursors. In one procedure, thia-Michael adducts are prepared from alkyl halides, thiourea and Michael acceptors in SDS micellar media. In this method, α , β -unsaturated ketones, esters, nitriles and amides successfully produced the corresponding thia-Michael adducts in good to excellent yields.

In the second method, polyethylene glycol (PEG 200) is employed as another green media for direct preparation of thia-Michael adducts from nonthiolic precursors under mild conditions. In this protocol, a mixture of an alkyl halide (primary, secondary, tertiary, allylic or benzylic), thiourea, a conjugated olefin (ketones, esters, nitriles) and sodium carbonate in wet PEG 200 cleanly produced the related thia-Michael adducts in good to excellent yields. We have also developed two odorless methods for the preparation of disufides from non-thiolic precursors. In the first, disulfides are produced in SDS micellar media from their corresponding primary, benzylic or allylic halides using thiourea, MnO_2 and a base (NaHCO₃ or Na₂CO₃) in good to excellent yields. By the second method, wet PEG 200 is used as a media for direct conversion of alkyl halides to disulfides. In this method, primary, secondary, tertiary, allylic, and benzylic halides were efficiently converted to their corresponding symmetrical disulfides by the use of thiourea, MnO_2 and Na_2CO_3 in high yields at 30-35 °C.

In addition, a catalyst-free procedure for large-scale addition of thioacids to a variety of electron-deficient olefins under solvent-free conditions at room temperature is also developed.

We have also developed two new mild procedures for regioselective addition of thioacids to epoxides in the presence of silica gel. In the first method, thioacids are added to epoxides in the presence of small portions of silica gel under solvent-free conditions to produce the corresponding β -hydroxy thioesters in good to excellnt yields. However, it has been found that the resulted β -hydroxy thioesters in treatment with silica gel were partially rearranged to their corresponding β -mercapto ester isomers *via* an acyl transfer process. Accordingly, we have developed another method for one-pot and selective preparation of β -mercapto esters from the reaction of thioacids with epoxides in the presence of silica gel.

TABLE OF CONTENT

CONTENT P	PAGE
-----------	------

CHAPTER ONE: INTRODUCTION AND LITERATURE	
REVIEW	1
1.1. Introduction	2
1.2. Thiols	3
1.3. Methods of thiol synthesis via C-S bond formation	4
1.3.1 Synthesis from elemental sulfur and its inorganic	
derivatives	Z
1.3.2 Hydrolytic methods of thiol synthesis	7
1.4. Applications of thiols in the C-S bond formation reactions	11
1.4.1. C-S bond formation via replacement of a halogen at	
a carbon atom by RS group	12
1.4.2. C-S bond formation via addition of thiols to multiple	
bonds of unsaturated compounds	17
1.5 Thioacids	31
1.5.1 C-S bond formation via conjugate addition of	
thioacids to Michael acceptors	31
1.5.2. C-S bond formation via ring opening of epoxides	
with thioacids	35

1.6 Disufides
1.7 The objective of this study
APTER TWO: EXPERIMENTAL
2.1. General
2.2. General procedure for the synthesis of thia-Michael adducts
using alkyl halides, thiourea and electron deficient alkenes in
micellar solution of SDS at 80-90 °C
2.2.1. Typical procedure for the synthesis of 3-
(decylthio)cyclohexanone using 1-iododecane, thiourea
and 2-cyclohexenone in SDS micellar solution at 80-90
°C
2.2.2. Typical procedure for large-scale preparation of
butyl 3-(butylthio)propanoate using <i>n</i> -butyl acrylate,
thiourea, <i>n</i> -butyl bromide and NaHCO ₃ in SDS micellar
solution
2.3 General procedure for the synthesis of thia-Michael adducts
with allylic and benzylic halides, thiourea and electron
deficient alkenes in micellar solution of SDS at room
temperature
2.3.1. Typical procedure for synthesis of butyl 3-
(benzylthio)propanoate using benzyl chloride, thiourea
and <i>n</i> -butyl acrylate in micellar solution of SDS at room
temperature
2.4. General procedure for thia-Michael addition to acrylamide
in micellar solution of SDS using alkyl halides, thiourea and
Na ₂ CO ₃ at 80-90 °C

2.4.1. Typical procedure for synthesis of 2-	
(benzylthio)acetamide using acrylamide, benzyl bromide,	
thiourea and Na_2CO_3 in SDS micellar solution at 80-90 °C	48
2.5. General procedure for one-pot preparation of thia-Michael	
adducts using alkyl halides, thiourea, electron-deficient	
alkenes, and sodium carbonate in wet PEG 200 at 30-35 $^{\rm o}{\rm C}$	49
2.5.1. Typical large-scale procedure for one-pot	
preparation of butyl 3-(octylthio)propanoate using 1-	
bromooctane, thiourea, n-butyl acrylate, and sodium	
carbonate in wet PEG 200 at 30-35 °C	49
2.6. General procedure for one-pot preparation of disulfides	
using alkyl halides, thiourea and MnO ₂ in the micellar solution	
of SDS at 80 °C	67
2.6.1. Typical procedure for large-scale preparation of	
dibutyl disulfide using n-butyl bromide, thiourea and	
MnO ₂ in SDS micellar solution at 80 °C	67
2.7. General procedure for one-pot preparation of benzylic or	
allylic disulfides using benzylic or allylic halides, thiourea and	
MnO ₂ in SDS micellar solution at room temperature	68
2.7.1. Typical procedure for one-pot preparation of	
dibenzyl disulfide using benzyl chloride, thiourea and	
MnO ₂ in SDS micellar solution at room temperature	68
2.8. General procedure for one-pot conversion of alkyl halides	
to their corresponding symmetrical disulfides using thiourea and	
MnO_2 in wet polyethylene glycol (PEG 200) at 30-35 °C	69
2.8.1. Typical scale-up procedure for direct conversion of	
benzyl chloride to its corresponding symmetrical disulfides	

using thiourea and MnO ₂ in wet polyethylene glycol (PEG	
200) at 30-35 °C	69
2.9. General procedure for catalyst-free conjugate addition of	
thioacids to electron-deficient olefins under solvent-free	
condition at room temperature	71
2.9.1. Typical large-scale procedure for the conjugate	
addition of thioacetic acid to <i>n</i> -butyl acrylate	72
2.9.2. Typical large-scale procedure for the conjugate	
addition of thiobenzoic acid to benzylideneacetone	72
2.10. General procedure for one-pot preparation of β -	
trimethylsilyloxy thioesters via regioselective ring opening of	
epoxides with thioacids at room temperature in the absence of	
solvent	79
2.10.1 Typical procedure for one-pot preparation of S-3-	
phenoxy-2-(trimethylsilyloxy)propyl ethanethioate via	
regioselective ring opening of 2-(phenoxymethyl)oxirane	
with thioacetic acid at room temperature in the absence of	
solvent	80
2.11. General procedure for one-pot synthesis of β -mercapto	
esters from thioacids and epoxides in the presence of SiO_2	80
2.11.1. Typical procedure for one-pot synthesis of β -	
mercapto esters from thioacids and epoxides in the	
presence of SiO ₂	81
2.12. General procedure for the protection of -SH functional	
group in the β -mercapto esters using benzyl bromide and Et ₃ N	
in water	81
2.12.1. Typical procedure for the protection of -SH	

functional group in the 1-mercapto-3-phenoxypropan-2-y	yl
acetate using benzyl bromide and Et ₃ N in water	• • •
APTER THREE: RESULTS AND DISCUSSION	•
3.1. A facile generation of C-S bonds via one-pot, odorless an	ıd
efficient thia-Michael addition reactions using alkyl halide	s,
thiourea and electron-deficient alkenes in the micellar solution	n
of sodium dodecyl sulfate (SDS)	•
3.2. A facile generation of C-S bonds via one-pot, odorless an	ıd
efficient thia-Michael addition reactions using alkyl halide	s,
thiourea and electron-deficient alkenes in wet polyethylen	ıe
glycol (PEG 200)	
3.3. A facile generation of disulfides in one-pot, odorless an	ıd
efficient method using alkyl halides, thiourea and MnO_2 in the	ne
micellar solution of sodium dodecyl sulfate (SDS)	
3.4. A one-pot, efficient, and odorless method for synthesis of	of
symmetrical disulfides from organic halides, and thiourea in the	ıe
presence of MnO ₂ and Na ₂ CO ₃ in wet polyethylene glycol (PE	G
200)	
3.5. Catalyst-free C-S bond formation via thia-Michael addition	n
of thioacids to electron-deficient olefins in the absence of	of
solvent at room temperature	•••
3.6. Regioselective ring opening of epoxides with thioacid	ls
catalyzed by silica gel	•••
3.7. Conclusions	

LIST OF TABLES

TABLE	PAGE
Table 3.1. The effect of temperature and SDS micellar solution on the	
one-pot generation of thia-Michael adduct using 1-bromooctane,	
thiourea and <i>n</i> -butyl acrylate in the presence of NaHCO ₃	96
Table 3.2. One-pot thia-Michael addition using RX (X = Br, I),	
thiourea and electron-deficient alkenes catalyzed by SDS micellar	
solution	97
Table 3.3. Failed reactions for one-pot thia-Michael adduct formation	
under optimized reaction conditions	101
Table 3.4. One-pot thia-Michael addition using allyl and benzyl	
halides, thiourea and electron-deficient alkenes catalyzed by SDS	
micellar solution at room temperature	102
Table 3.5. Thia-Michael addition at acrylamide using alkyl halides	
and thisurea in the presence of Na_2CO_3 in SDS micellar solution	105
Table 3.6. One-pot thia-Michael addition using alkyl halides,	
thiourea, and Michael acceptors in the presence of Na ₂ CO ₃ in wet	
PEG 200 at 30-35 °C	110
Table 3.7. One-pot formation of thia-Michael adduct from 1-	
iododecane, thiourea and <i>n</i> -butyl acrylate in various media	116
Table 3.8. Effects of SDS, temperature and oxidizing agents on the	
preparation of <i>n</i> -octyl disulfide from <i>n</i> -octyl bromide and thiourea in	
aqueous media in the presence of NaHCO ₃	120
Table 3.9. One-pot conversion of alkyl halides to their corresponding	

symmetrical disulfides in the presence of thiourea, MnO_2 and	
NaHCO ₃ catalyzed by SDS micellar solution at 80 °C	121
Table 3.10. One-pot conversion of benzylic and allylic halides to	
their corresponding symmetrical disulfides in the presence of	
thiourea, MnO ₂ and Na ₂ CO ₃ catalyzed by SDS micellar solution at	
room temperature	123
Table 3.11. One-pot conversion of alkyl halides to their	
corresponding symmetrical disulfides using thiourea, Na ₂ CO ₃ and	
MnO ₂ in wet polyethylene glycol at 30-35 °C	127
Table 3.12. One-pot preparation of dibenzyl disulfide from benzyl	
chloride, thiourea, MnO ₂ and Na ₂ CO ₃ in various solvents	129
Table 3.13. Catalyst-free conjugate addition of thioacetic acid to n -	
butyl acrylate in the various reaction media at room temperature	130
Table 3.14. Catalyst-free thia-Michael addition of thioacids to	
electron-deficient olefins under solvent-free conditions at room	
temperature	132
Table 3.15. One-pot synthesis of β -trimethylsilyloxy thioesters from	
thioacids, epoxides and HMDS in the presence of SiO ₂	137
Table 3.16. One-pot synthesis of β -mercapto esters from the reaction	
of epoxides with thioacids in the presence of SiO_2 followed by $-SH$	
protection	139

LIST OF FIGURES

FIGURE	PAGE
Figure 1. The proposed role of micellar SDS droplets for thia-	
Michael adduct formation	108
Figure 2. The proposed role of SDS micellar droplets in one-pot	
conversion of alkyl halides to their corresponding	
disulfides	125
Figure 3. a) Easy separation of the oily product from the reaction	
mixture after addition of aqueous solution of NaHCO ₃ ; b) Easy	
separation of the solid product after addition of aqueous solution of	
NaHCO ₃	132
Figure 4. IR spectra analysis of the reaction depicted in Table 2, entry	
9 after (a) $n = 5$; (b) $n = 10$; (c) $n = 15$ and (d) $n = 20$ sequences of	
addition-evaporation of the solvent	141

ABBREVIATIONS

DMF	N,N-Dimethylformamide
HMDS	Hexamethyldisilazane
SDS	Sodium dodecyl sulfate
GC	Gas chromatography
TLC	Tin layer chromatography
EtOAc	Ethyl acetate
THF	Tetrahydrofuran
Bu	Butyl
Me	Methyl
Et	Ethyl
<i>i</i> -Pr	<i>iso</i> Propyl

CHAPTER ONE INTRODUCTION AND LITERATURE REVIEW

CHAPTER ONE

INTRODUCTION AND LITERATURE REVIEW

1.1. Introduction

Organosulfur compounds are molecules which contain at least one sulfur atom in their molecular structures and are found extensively in nature. Fossil fuels, coal, petroleum, and natural gas, which are derived from ancient organisms, necessarily contain organosulfur compounds. Sulfur-containing molecules can be found in all living organisms (such as: biotin, ligands in bioinorganic complexes and amino acids) which play important roles in catabolism and anabolism reactions. Thus, they are essential part of life. These compounds have found wide applications in agriculture, medicine, and industry as insecticide, fungicide, emulsifier, and etc.

Important organosulfur compounds can be classified in several groups, including thiols (mercaptans), sulfides (thioethers), sulfoxides, sulfones, thioesters, thioacids, sulfonic and sulfinic acids and their derivatives and also disulfides (Scheme 1.1).

Sulfinic acids

Sulfonic acids

Thioacids

R SR Thioesters

Scheme 1.1

Synthetically, carbon-sulfur bond formation is the essence of organic sulfur synthesis and provides the foundation of generating more complicated organo-sulfur compounds from simpler molecules such as thiols.¹

1.2. Thiols

Thiols are among the simplest classes of the organosulfur compounds playing important part in many chemical transformations. This is primarily due to the presence of a sulfur atom, a reactive center of variable valency, and also the S-H bond whose rupture can result in generation of thivl radicals, thiolate anions, and sulfenyl cations operating as relatively stable and highly reactive intermediates. Thiols also play important role in many biochemical processes. For instance, cysteine is a component of proteins that operate in the biochemical redox processes and in the capture of free radicals.² The presence of this amino acid rest ensures formation of disulfide bridges fixing the conformation of proteins and polypeptides by building up a cystine fragment. The cystamine enters into disulfide exchange with the newly synthesized proteins containing thiol groups.³ Glutathione tripeptide with a thiol group is present in a relatively high concentration in the intercellular space of the living organisms.⁴ It preserves the thiol groups in proteins, destroys peroxides and free radicals, and performs the coenzyme function. Glutathione espermidine takes part in the growth control and in metabolism of nucleic acids.⁵ The coenzyme A (COA-SH) containing an active mercapto group catalyzes acyl groups transfer in the biosynthesis of fatty acids and biotin.⁶ Certain dithiols, in particular, dihydrolipoic acid, take part in the photosynthesis and the metabolism in mitochondria.^{7,8} The conversion of the green form of sulfomyoglobin into the red form is believed⁹ to result from transformation of a thioepoxy group into a thiol one. The natural occurrence of thiols is relatively rare due to their ready oxidation to disulfides. Thiols naturally form mostly as