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ABSTRACT

THEORETICAL AND E)G?ERIMZENTAL KINETICS
STUDY OF GAS HYDRATE FORMATION IN THE
- PIPELINE

BY

MOHAMMAD SARSHAR

A flow loop setup has been developed for the kinetics study of gas hydrate

" formation in the gas pipeline. Experiments have been carried out for carbon

dioxide, propane and a mixture of methane and propane at operating temperatures

and pressures of 3-8 °C and 1-5 MPa. The above mentioned gases are selected

“because; they are the constituents of the natural gas. Hydrate formation rate is

directly proportional to the gas consumption rate and due to this, the hydrate
formation rate is determined by the measurement c_>f the gas consumption rate. The
measured gas consumption rates are in the range of 0.05-0.20 gr/s. Further, a set
of partial differential and algebraic equations have been developed based on the
crystallization, mass transfer, nucleation and equilibrium concepts to simulate the
process of hydrate formation in the flow loop. The predicted gas consumptions are

compared with the experimental data for which good agreements are achieved.
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Nomenclature

Surface area (m?)
Kinetics parameter
Shape factor

Parameter of equation (2-10)
Concentration (mol/m®)

Diffusivity (m%/s)
Pipe diameter (m)
Fugacity (bar)
Growth rate

Greek Letters

Nucleation rate (m™ s or m? s)

Boltzman constant
Molecular weight
Avogadro number
Mole number (mole)
Hydrate building units
Hydration number

Pressure (bar)
Consumption (mole)
Crystal radius (m)
Gas Constant

Rate of gas consumption

(mole/m’ s)
Temperature (K)

Time (s)

Volume (m*)

Molar volume (Cm*/mol)

Formation energy of nucleus (J)

Longitudinal coordinate (m)
Zeldovich factor equation (8)

€ Kinetics parameter

i Chemical potential
Q]

p Density (kg/m’)

c ‘Surface energy
(I/m?)

v Shape factor

Subscripts

e Equilibrium

h Hydrate

I Counter

p particle

w Water .

h Hydrate phase

\'% Water

R Reactor

Superscript

s ‘

aq. Aqueous phase -

g Gas phase




Chapter 1- Introduction




1- Introduction

Kinetics of hydrate formation is a key parameter in the development of the
mathematical models for the simulation purposes. Further, a new kind of hydrate
inhibitors were developed which are based on the kinetics of hydrate formation.
Hydrate inhibition is vital in the protection of gas transportation lines from
blockage or damage by the hydrate

In recent years, some applications have been developed such as gas storage, water
desalination, gas transportation and carbon dioxide sequestration which are based
on gas hydrate formation. Hydrate promotion is an interesting item in designing
‘hydrate production processes which can be used in the above applications.

Most of the previous studies in this matter are limited to the batch system for gas hydrate

formation. But in this study, hydrate formation of carbon dioxide, propane and a

mixture of methane and propane have been investigated in a recirculating flow

loop eiperimentally ’gnd theoretically. A set of mathematical models have been
developed to simulate the process of hydrate formation in the flow loop. The
predicted gas consumptions are compared with the experimental data at operating
temperatures and pressures of 3-8 °C and 1-5 MPa. Further, the kinetics
parameters are analyzed to study their effects on the formation rates.

Complete literature réviews of gas hydrate formation are presented in chapter 1,
the mathematical models are described in the chapter 2 and experimental works
are presented ih chapter 3. Simulation of hydrate formation is presented in chapter
4 and in chapter 5 the results of the experimental works and mathematical models
are described. In the last section, conclusion is presented.

The two first sections of chapter 1 give an introduction to the microscopic
structures of gas hydrates and to the thermodynamic conditions where hydrates

may form. The fundamental mechanisms of hydrate formation are reviewed in

Section 1.3. The driving force for hydrate formation is discussed in Section 1.4.




Experimental studies of the rate of methane, ethane and propane hydrate
formation are presented in~ Section 1.5. Studies of hydrate crystal size are
reviewed in Section 1.6. Nucleation and induction time models are reviewed in
section 1.7 and models and correlations of gas hydrate formation rate are reviewed
in Section 1.8. Finally, the experimental setups used in the study of hydrate

formation are described in Section 1.9.
1-1- Hydrate structures

Gas hydrates are crystalline solids which are more properly called clathrate
hydrates to distinguish them from stoichiometric hydrates found in inorganic
chemistry. Thé crystalline structure is composed of pblyhedra of hydrogen bonded
water molecules. The polyhedra form cages that contain at most one guest
molecule each. The cages are stabilized by van der Waals forces between the
water molgcules and the enclatherated guest molecule. In extraordinary situations,
two gueét molecules may enter the same cage (Sloan, 1998). Only a few kinds of
cages‘may form depending on thé size of the guest molecule. These cages arrange
into different hydrate structures known as structure SI, structure SH and sﬁucture
. SH (Sloan, 1998) as shown in figure 1-1. Methane and natural gas form SI and SII
structures, respectively. In a unit cell of SI hydrate, 2 small and 6 large cages

appear. The small cage, the pentagonal dodecahedron labeled 52, has 12 }

lengths and equal an,

Figure 1-1- Hydrate structures known as () structure I (SI), (b) structure II (SII)
and (c) structure H (SH) (Sloan, 1998).

I




The large cage, the tetrakaidecahedron, is called 5'26* because it has 12
pentagonél and 2 hexagonal faces. One SI unit cell has 46 water moleculeé and
fits into a 12 A cube. SII consists of 16 small cages and 8 large cages. Also, SII
has the pentagonal dodecahedron 5'* as the small cage. The large cage, the
hexakaidecahedron, has 12 pentagonal and 4 hexagonal faces and is therefore

labeled 5'%6*. One SII unit cell has 136 water molecules and fits into a 17.3 A

Figure 1-2- (a) Pentagonal Dodecahedron (5'2) (b) Tetrakaidecahedron (5'%2) (c)

Hexakaidécahedron (526" (Sloan, 1998)

Generally, molecules between 3.8 A and 6.5 A in diameter can form SI and SII
hydrates if they do not contain hydrogen bonding group(s).

Depending on the size of the guest molecules, only the large cages of each
‘structure can be occupiéd or both types of cages can be occupied. The small cages
are never occupied alone as this is not enough to stabilize either SI or SI.
ﬁowever, if the small cages can be filled, the molecule will also enter the large
cages as a simple hydrate species. Sirﬁple hydrates are hydrates with only one
guest species (Sloan, 1998). The large cages in SI (5'%6%) are large enough to
contain molecules up to 6.0 A in diameter, in which only ethane and carbon
dioxide of the natural gas components stabilize as simple hydrates. The large
cages in SII can contain molecules as large as 6.6 A. This means that propane and
iso-butane will stabilize the large cages, but leave the small cages of SII vacant.

Alternatively, the small cages are filled with methane, which means that natural

I




