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ABSTRACT

“SOLUTION OF TRANSONIC & SUPERSONIC INVISCID
FLOW EQUATIONS IN 3-D ECCENTRIC NOZZLES”

BY

Ali Reza Mazaheri

A computer program for solving the inviscid flow equations in three-
dimensional eccentric nozzles as well as concentric nozzles is
developed. The program uses the cell-centered finite-volume method
based on Roe’s approximate Riemann solver scheme. To show the
accuracy and capability of this code, the results of concentric circular
nozzles are first compared with simple one-dimensional analytic
solution, and then the results for steady and unsteady flow through
eccentric and concentric convergent-divergent nozzles are presented.
The results are given for various area and pressure ratios, and different

values of the inlet Mach number.
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ABBREVIATIONS AND SYMBOLS

A wave speed

a,b,c,d cell-face points

AB,C Jacobian of flux vector with respect to conservative
variables E,F,G, respectively

c speed of sound

e internal energy per unit mass

EF.G column-vector of Cartesian flux functions

h enthalpy per unit mass

j.k,1 computational coordinate indices

J Jacobian of coordinate transformation

A,r left and right eigenvectors

LL! left and right eigenvector matrices

M matrix of non-conservative variables

p pressure

Q column-vector of conservative variables

r,0,x circular cylindrical coordinates

R local radius of nozzles

u scalar dependent variable

wV,wW velocity component in X,y,z directions

U,v,W contravariant velocities

Voprim. column-vector of primitive variables

\'Y column-vector of characteristic variables

X,Y,Z Cartesian coordinates

Greek Symbols

a pseudocharacteristic variables

d central difference operator: du =u, ,—U._,

vi




8" forward difference operator:d™u, =u,, ~U;

& backward difference operator:3 u, =u, — U,

A mesh size in the given directions

At time step

Y specific heat ratio

LI X,y,Z components of cell face normals

A eigenvalue

A diagonal ~matrix whose diagonal elements are
eigenvalues

0 (@ +v+w?)/2

p density

T transformed time coordinate

Q volume

oQ curve surface

£,n,C transformed coordinates

Superscripts

n iteration level or time level

(M) fluxes in the transformed domain

(") numerical flux of cell face

Subscripts

0,1,2 subscript 0 indicates a wall point and subscripts 1 and 2
indicate above the wall point

jK,1 mesh points location

X,¥,Z partial differentiation with respect t0 X,y,Z

&n.G

partial differentiation with respect to §,1,G
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CHAPTER

Introduction

Mathematical physics is the study Qf mathematical models that
describe observed physical phenomena. éomputational fluid dynamics
1s a branch of mathematical physics that deals with the numerical
solutions of several mathematical models, explaining the physics of
fluid flow. Many important problems, of frequent occurrence in the
field of fluid mechanics and dynamics and, especially, in transonic
and supersonic fluid flows, can be solved and analyzed by the Euler
equations. The Euler equation models are not just the study of non-
viscous fluids, but of fluids with such small values of viscosity, that
tangential stresses are small compared to the normal pressure exerted

by the fluids.

There are three different approaches for modeling convective terms
in the discretized Euler equations: Artificial viscosity, Upwind flux
difference splitting and Godunov-types schemes. First, we are going to

have a look at a brief history of these models.

1-1 Artificial Viscosity

Consider a one-dimensional system of conservation laws

—+—=0 (L.a)




where u and f are column vectors. The above system can be written as

a quasi-linear system

%+A(u)%=o (L.b)

where A 1s the Jacobian matrix % The numerical fluxes f;l "

defined by

* At
fm/z = (fi +fi+1)/2_EAi+l/2(fi+l -f) (2.2)

Different versions of the non-linear Lax-Wendroff schemes [1] can

be written according to Lax and Wendroff as

. At
fo. =@ +fi+1)/2—EAi+1/2 (f, —f)- D(u,,u, ).(u,, -u) (2b)

i+1/2

where D is any possible function of (u_ ~u. ) which goes to zero at

1

least linearly with (u_ —u). The function D must have the

dimension of A, that is the dimension of a velocity times density, and
therefore DAx has the dimensions of viscosity if u represents a
velocity component. Lax and Wendroff called D the artificial

Viscosity.

In order for D, , to have a stabilizing influence, it has to be

2
positive [1]. However, one can also define D as a polynomial function

of (u , —u ), which is often done in practical implementations of

artificial viscosity terms.

Jameson and Turkel [1] are just two examples of many researchers




who have investigated some external flows with artificial viscosity
schemes. The forms of artificial viscosity terms are not arbitrary but
any form of non-vanishing dissipation will be sufficient to implement
the entropy condition and exclude expansion shocks as shown by Lax

[see ref. 1].

Jameson applied a blend of the expressions of artificial viscosity,
addition of third-order derivatives plus higher-order derivatives,
considering shock-capturing properties [see ref. 1]. In this approach,
the third derivative term is switched off, when the quantity of artificial
viscosity dominates. The same formulation has also been applied by

Pulliam [2].

Swanson and Turkel [3] modified the artificial dissipation
(viscosity) model, including boundary treatment, for solving the Euler
and Navier-Stokes equations, and then they used a central differencing
algorithm to investigate various modells'[.:‘ln that work, the artificial
dissipation model introduced by Jameson, Schmidt and Turkel is

reviewed.

Reddy and Jacocks[4] used a locally implicit method for solving
the Euler equations with finite volume spatial discretization and

Jameson-type artificial dissipation terms.

1-2 Upwind Schemes

The family of the upwind schemes mgiy be taken back to Courant,
Iscaacson and Reeves who introduced the physical properties of the

flow equations into the discretized formulation, which led to a new




