

المهي! بنده را از سه آفت نگاهدار: از وساوس شیطانی، از هوای نفسانی، از غرور نادانی

Faculty of Science Department of Chemistry

PhD Thesis

Title of the Thesis:

Preparation of Polymeric Nanofilter Membranes for Water Treatment

Supervisor: Prof. Sayed Siavosh Madaeni

> By: Yaghoub Mansourpanah

> > September 2009

Faculty of Science Department of Chemistry

PhD Thesis

Title of the Thesis:

Preparation of Polymeric Nanofilter Membranes for Water Treatment

Approved and Evaluated By Thesis Committee: As.....

Supervisor: Prof. Sayed Siavosh Madaeni (Professor)
Internal Examiner: Dr. Masoud Rahimi (Associate Professor)
Internal Examiner: Dr. Mohammad Joshagani (Associate Professor)
External Examiner: Prof. Alireza Ghiasvand (Professor)
External Examiner: Dr. Abdolah Yari (Associate Professor)

September 2009

To my wife,

a major driving force

Acknowledgment

I would especially like to thank Prof. Madaeni for his valuable guidance, utmost help, encouragement and advice through out the research. I want to sincerely thank my committee members, Dr. Rahimi, Dr. Joshagani, Prof. Giasvand and Dr. Yari for spending time and effort to review this thesis. I gratefully acknowledge my colleague and classmate Dr. Rahimpour, Amirinejad, Kocheki, Zereshki and Daneshvar for helpful suggestions and advice in conducting experiments, especially in our meetings. I express my profound gratitude to my wife for her strong encouragement and inspiration given to me.

Finally, I would like to acknowledge New Technologies Centre - Ministry of Industry of Iran for financial support.

Abstract

In the first work, the effect of microwave irradiation on morphology and performance of polyethersulfone (PES) membranes was investigated. The membranes were prepared with 20 wt.% of PES by phase inversion method. N,N- dimethylformamide (DMF) and a mixture of water and ethyl alcohol (90/10 vol%) were employed as solvent and coagulant, respectively. The effects of irradiation time (10, 30, 60, 90, 120 s) and microwave power (180, 360, 720 and 900 W) on structure and performance of membranes were studied. Increasing the irradiation time and power caused variation in permeate flux and ion rejection. Moreover, the effects of annealing processes (60, 70, 80 °C) were studied. The membrane exhibited moderate rejection (47%) and low permeate flux (4.5 kg/m².h) at 80 °C for NaCl solution. The SEM images indicate that the dense skin layer is formed at 80 °C annealing.

In the other work, blends of polyethersulfone/polyimide (PES/PI) were prepared by dissolving in dimethylformamide/dioxane (DMF/DO) to manufacture nanofiltration membranes by using polyvinylpirrolidone (PVP) as a pore former. The membrane modification was carried out by adding ethylenediamine (EDA) to open the imide group ring of PI and by using polyethyleneglycol (PEG)-triazine, as a new modifier material, that was produced in the laboratory. After functionalizing the membranes, diethanolamine (DEA) was utilized as a hydrophilic modifier to change the membranes properties. The hydrophilicity of PES/PI membranes was improved by modification. By introducing PEG-triazine into the membrane recipe, salt rejection increased from 75 to 80%. Addition of DEA further enhances the salt rejection up to 93%.

Titanium dioxide (TiO₂) nanoparticles were assembled on the surface of nanofiltration blend membrane in the third work. To settle TiO_2 on the membrane surface, two membrane

categories were used: i) unmodified polyethersulfone (PES)/polyimide (PI) blend membrane, and ii) –OH functionalized PES/PI blend membrane with different concentrations of diethanolamine (DEA). These membranes were radiated by UV light (160 Waat) after TiO_2 depositing with different concentrations. The modification resulted in the formation of a photo-catalytic property with enhanced membrane hydrophilicity. A comparison between the UV irradiated TiO_2 deposited blend membrane and deposited-functionalized blend membranes showed that –OH groups originate excellent adhesion of TiO_2 nanoparticles on the membrane surface, increase reversible deposition, and diminish irreversible fouling. SEM images show that the presence of -OH groups on the DEA-modified membrane surface is the main parameter for extra uniformly settlement of TiO_2 nanoparticles on the membrane surface.

In the fourth work, the effect of microwave irradiation on preparation of composite nanofiltration membranes was investigated. Interfacial polymerization technique was employed by applying trimesoyl chloride (TMC) and piperazine (PIP) as the reagents for preparation of polyamide (PA) skin layer on a polyethersulfone (PES) support. The different times (0, 10, 30 and 60 s) and powers (540, 720 and 900 Watt) of microwave irradiation were applied. The results showed that under an operational pressure of 1.0 MPa, and 540 W for 0, 10, 30 and 60s irradiation, fluxes of 13, 8, 8, and 10 kg/m² h and 46, 63, 57, and 51% retention for NaCl and 82, 88, 87, and 88% rejection of Na₂SO₄ were obtained. Increasing the irradiation power resulted in a slight decline in the rejection.

Finally, the effects of addition of cationic (CTAB), non-ionic (Triton X-100) and anionic (SDS) surfactants in organic phase for preparing the composite nanofiltration membranes were investigated. The interfacial polymerization technique was employed by applying

trimesoyl chloride (TMC) and piperazine (PIP) as the reagents for preparation of polyamide (PA) on a UF support. The prepared membranes containing SDS showed higher flux compared to the other membranes. SEM surface images demonstrate some defects and cracks on the thin layer surface of the membrane prepared with SDS. For the membrane containing CTAB, the salt rejection was increased in the order of Na₂SO₄ >NaCl >MgCl₂ with variation around 50 to 90%.

Contents

	Pages
Chapter 1. Membrane processes and nanofiltration (NF)	1
1.1. Introduction	2
1.2. Advantages of membrane technology	3
1.3. Classification of membrane processes based on driving forces	4
1.4. Applications of separation processes by membrane	6
1.5. The ideal membrane characteristics	7
1.6. Types of membranes for water treatment	7
1.7. Separation mechanisms of membranes	8
1.8. Nanofiltration (NF)	.12
1.9. Transport mechanism in NF membranes	13
1.10. Parameters affecting the performance of NF membranes	15
1.11. Nanofiltration membrane modules	.16

Chapter 2. Membrane manufacturing	22
2.1. Introduction	23
2.2. Membrane Materials	24
2.3. Manufacturing processes	
2.3.1. Sintering.	26
2.3.2. Stretching	27
2.3.3. Track-etching	
2.3.4. Phase inversion.	

Chapter 3. Characterization procedures and materials	34
3.1. Nanofiltration system	35
3.2. FTIR-ATR measurement.	37

3.3. Scanning electron microscopy (SEM)	37
3.4. Atomic force microscopy (AFM)	39
3.5. Contact angle measurement	39
3.6. Microwave apparatus	39
3.7. Oven	39
3.8. Atomic absorption spectrometer	40
3.9. Zeta potential	40
3.10. Material	40

Chapter 4. Experimental, results and discussion	42
4.1. The effects of microwave irradiation on membrane properties	43
4.1.1. Introduction	43
4.1.2. Experimental	
4.1.2.1. Preparation of membranes	44
4.1.3. Results and discussion	
4.1.3.1. Effect of microwave irradiation on membrane performance	44
4.1.3.2. Effect of microwave irradiation on membrane structure	47
4.1.3.3. Contact angle measurements	56
4.1.3.4. Effect of heat treatment on membrane	57
4.1.4. Conclusion	58

4.2.	Surface	modification	and	preparation	of	NF	membrane	from
polye	thersulfon	e/polyimide blen	d- use o	of a new materia	l (PE	G-triaz	zine)	.60
4.2	.1. Introduc	tion						.60
4.2	.2. Experim	ental						.61
2	4.2.2.1. Prep	paration of PEG-t	riazine.					.61
2	4.2.2.2. Prep	paration of memb	ranes					62
2	4.2.2.3. Mod	dification and pos	t-treatm	ent of membrane	es			.62
4.2	.3. Result a	nd discussion						.64
2	4.2.3.1. FTI	R-ATR spectra						64
2	4.2.3.2. Mic	roscopic studies-	SEM ar	nd AFM images.				65

4.2.3.2.1. Effect of PES/PI ratio on membrane morphology	65
4.2.3.2.2. Effect of chemical modification on membrane morphology	67
4.2.3.2.3. Membrane pore size and roughness	69
4.2.3.3. Water contact angle	72
4.2.3.4. Membrane performance	72
4.2.4. Conclusion	75

4.3. Formation of appropriate sites on nanofiltration membrane	surface for binding
TiO ₂ photo-catalyst: performance, characterization and	fouling-resistant
capability	76
4.3.1. Introduction	76
4.3.2. Experimental	
4.3.2.1. Preparation of membranes	78
4.3.2.2. Fouling quantification	80
4.3.2.3. Characterization of membranes	81
4.3.3. Results and discussion	82
4.3.3.1. Mechanism of semiconductor photo-catalysis	
4.3.3.2. Mechanism of hydrophilicity improvement	83
4.3.3.3. The effect of DEA and TiO ₂ on membrane properties	
4.3.3.4. Performance and antifouling properties of membranes	88
4.3.3.5. Effect of –OH groups on TiO ₂ binding	93
4.3.4. Conclusion	97

4.4.	Preparation an	id characteriza	tion of	polyethersu	ılphone	supported
poly(piperazineamide)	nanofiltration	membrane	using	microw	ave-assisted
polyr	nerization	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	99
4.4	.1. Introduction					99
4.4	.2. Experimental					101
2	4.4.2.1. Preparation of	f PES support				101
2	4.4.2.2. Fabrication of	f thin film composi	te membranes			101
2	4.4.2.3. Characterizat	ion of membranes.				102

4.4.2.4. Membrane performance evaluation	102
4.4.3. Result and discussion	103
4.4.3.1. Mechanism of interfacial polymerization reaction	103
4.4.3.2. Characterization of skin layer structure	104
4.4.3.3. Effect of irradiation time	111
4.4.3.3.1. Investigation of irradiation time without the presence of organ	ic reagent
solution	111
4.4.3.3.2. Investigation of irradiation time in the presence of organic reas	gent
solution	114
4.4.3.4. Zeta potential measurements	115
4.4.3.5. Effect of microwave power	115
4.4.3.6. Effect of feed solution concentration and pressure on rejection	116
4.4.4. Conclusion	117

4.5. Fabrication of interfacial polymerized thin-film composite nanofiltration membrane

using different surfactants in organic phase; characterization,	morphology and
performance	119
4.5.1. Introduction	119
4.5.2. Experimental	121
4.5.2.1. Preparation of PES support	121
4.5.2.2. Fabrication of thin film composite membranes	121
4.5.2.3. Characterization of membranes	
4.5.3. Result and discussion	
4.5.3.1. Membranes without surfactants	
4.5.3.2. Effect of CTAB	127
4.5.3.3. Effect of Triton X-100	131
4.5.3.4. Effect of SDS	
4.5.3.5. Comparing the effects of SDS, CTAB and Triton X-100	138
4.5.4. Conclusion	140

Chapter 5. Review, suggestions and final conclusions	141
5.1. Brief review of the works	142
5.2. Comparison and conclusion	151

References15	s 153
--------------	--------------

Chapter 1

Membrane processes and nanofiltration (NF)

1.1. Introduction

Starting in the late sixties of 20 century, membrane processes gradually have found their way into industrial applications and serve as viable alternatives for more traditional processes like distillation, evaporation or extraction.

A membrane process requires two bulk phases physically separated by a third phase, the membrane. The membrane is an interphase between the two bulk phases. It is either a homogeneous phase or a heterogeneous collection of phase. The membrane phase may be any one or a combination of nonporous solid, microporous or macroporous solid with a fluid (liquid or gas) in the pores, a liquid phase with or without a second phase, or a gel. The membrane phase is almost thin when compared with the dimensions of the bulk phases. The membrane phase interposed between two bulk phases controls the exchange of mass between these phases. In membrane separation processes, the bulk phases are mixtures. One of the species in the mixture is allowed to be exchanged in preference to others. The membrane is selective to one of the species. One bulk phase is enriched in one of the species while the other is depleted of it. A membrane process then allows selective and controlled transfer of one species from one bulk phase to another bulk phase separated by the membrane [1].

1.2. Advantages of membrane technology

Membrane separation technology has many advantage compare to common processes and classic separation, some of them are mentioned here:

- 1. Consumption of energy is relatively low because phase change doesn't occur.
- 2. Membrane modules are flexible and have low volumes.
- Because of low thickness of membrane (about 100 µm), mass transfer through it is high.
- 4. Pressure decrease and energy lost in this unit is negligible.
- 5. In this method the separation process is carried out at room temperature so can be used for separation of temperature sensitive material in food and pharmacutical industry and biotechnology.
- 6. Some of separations by membrane can not be done by other separation methods.
- 7. In this method the need for second chemical materials such as solvent, additive and etc., is very low.
- 8. Separation of very dilute solutions by membrane has higher efficiency.
- 9. There is no need to complex design for membrane application in separation process.
- 10. In many cases membrane process can be incorporated with other process to obtain high separation efficiency.
- 11. Membrane processes are cost effective compare to other processes based on the international figures.

1.3. Classification of membrane processes based on driving forces

One or more driving forces cause the movement of any species across the membrane. These driving forces arise from a gradient of chemical or electrical potentials. A gradient in chemical potential may be due to a concentration gradient, pressure gradient or both. The transmembrane flux of any species per unit driving force is proportional to the permeability of the species.

Based on the main driving force, which is applied to accomplish the separation, many membrane processes can be distinguished. An overview of the driving forces and the related membrane separation processes is given in Table (1-1).

Process	Driving Force	Materials Passed	Materials Retain
Microfiltration	ΔΡ	Solvent, dissolved	Suspended solids
(MF)		solutes	fine particulates
Ulterafiltration	ΔΡ	Solvent, low molecular	e Macrosolutes,
(UF)		weight solutes	Colloids
Nanofiltration	ΔΡ	Solvent,	Macrosolutes,
(NF)		Monovalence ions	Multivalence ions
Reverse Osmosis	ΔΡ	Solvent (water)	All dissolved &
(RO)			suspended solids
Gas Permeation	ΔΡ	Gases, vapours	Less permeable gase
(GP)			& vapours
Dialysis	ΔC	Solute, ion & low	Dissolved & suspende
		molecular weight	solids with molecula
		organics	weight > 1000
Liquid Membrane	ΔC	Cations / anions or	Anions / cations or
(LM)		low molecular weight	less permeable
		organics or gases	organic or gases
Gas Diffusion	ΔC	Gases, vapours	Less permeable
(GD)			gases & vapoure
Electrodialysis	ΔΕ	Solute, ions	Non-ionic & macro
(ED)			molecular species
Membrane Distillati	on ΔT	Volatile	Non volatile

Table (1-1). Classification of membrane processes based on driving forces [1]

1.4. Applications of separation processes by membrane

Membrane separation technology has considerable application in industry. Main applications of this technology are listed in Table (1-2).

Membrane process	Applications		
Dialysis (D)	Hemodialysis (artificial kidney)		
Electrodialysis (ED)	Water desalination Acidity reduction in citrus juices Deionisation of whey		
Reverse osmosis (RO)	Water desalination Dairy industry		
Nanofiltration (NF)	Water desalination Chemical industry Effluents		
Ulterafilteration (UF)	Dairy (whey recovery, precheese Concentration) Electrocoat colloids Effluents (oil-water, pulp and paper, Dye-stuffs, tannery) Biological (enzyms, fermantations) Water purification		
Microfilteration-Cross Flow Filteration (MF-CFF)	Sterile solution / water purification Beverage filteration Effluents Cell Harvesting		
Liquid membrane (LM)	Hydrometallurgy Effluents Gas separations		
Gas Permiation (GP)	Helium recovery Hydrogen recovery /removal CO ₂ from hydrocarbons		
Gas Diffusion (GD)	Uranium enrichment		
Pervapioration (PV)	Ethanol / water separation		
Membrane Distillation (MD)	Pure water		

 Table (1-2). Some major applications of membrane technology [1]

1.5. The ideal membrane characteristics

An ideal membrane should be resistant to chemical and microbial attack and the separation and mechanical characteristics should not change after long-term operation.

An ideal membrane has the following characteristics:

- High water flux
- High salt rejection
- Tolerant to chlorine and other oxidants
- Resistant to biological attack
- Resistant to fouling by colloidal and suspended material
- Inexpensive
- Mechanically strong, e.g., tolerates high pressures
- Chemically stable
- Able to withstand high temperatures

1.6. Types of membranes for water treatment

In the beginning, membrane processes for drinking water production were only applied in the US and the middle East. Nowadays the applications are rapidly expanding all over the world. World-wide, more than 9×10^6 m³ of water is processed per day by reverse osmosis (RO) and 10^6 m³ by NF and UF [2].

Water treatment processes employ several types of membranes. They include microfiltration (MF), ultrafiltration (UF), reverse osmosis, and nanofiltration membranes.