



پایاننامه دوره کارشناسی ارشد مهندسی برق-الکترونیک

# تحلیل رفتار سالیتون مکانی در ساختارهای متقارن پاریته-زمان **(PTS)** برای طراحی افزاره های نوری

مينا نظرى

استاد راهنما:

## دكتر محمد كاظم مروج فرشى

تیرماه ۱۳۹۱



میتاییدیه اعضای هیات داوران حاضر در جلسه دفاع از پایان نامه کارشناسی ارشد

بسمه تعالى

خانم مینا نظری پایان نامه ۶ واحدی خود را با عنوان تحلیل رفتار سالیتون مکانی در ساختارهای متقارن پاریته – زمان (PTS) برای طراحی افزاره های نوری در تاریخ ۱۳۹۱/۴/۲۷ ارائه کردند.

اعضای هیات داوران نسخه نهایی این پایان نامه را از نظر فرم و محتوا تایید کرده. پذیرش آنرا برای اخذ درجه کارشناسی ارشد الکترونیک پیشنهاد می کنند.

| امضا    | رتبه علمی | نام و نام خانوادگی      | عضو هيات داوران         |
|---------|-----------|-------------------------|-------------------------|
|         | استاد     | دکتر محمدکاظم مروج فرشی | استاد راهنما            |
| Z       | استاد     | دکتر وحید احمدی         | استاد ناظر              |
| (10 - 2 | استادیار  | دکتر داود فتحی          | استاد ناظر              |
| Ali     | دانشيار   | دکتر رحیم فائز          | استاد ناظر              |
|         | استاد و   | دکتر وحید احمدی         | مدير گروه               |
| -       | /         |                         | (یا نماینده گروه تخصصی) |

آیښنامه حق مالکیت مادي و معنوي در مورد نتایج پژوهشهاي علمي دانشگاه تربیت مدرس

مقدمه: با عنایت به سیاستهاي پژوهشی و فناوري دانشگاه در راستاي تحقق عدالت و کرامت انسانها که لازمه شکوفایی علمی و فنی است و رعایت حقوق مادي و معنوي دانشگاه و پژوهشگران، لازم است اعضاي هیأت علمی، دانشجویان، دانشآموختگان و دیگر همکاران طرح، در مورد نتایج پژوهشهاي علمی که تحت عناوین پایاننامه، رساله و طرحهاي تحقیقاتی با هماهنگی دانشگاه انجام شده است، موارد زیر را رعایت نمایند: ماده ۱- حق نشر و تکثير پایان نامه/ رساله و درآمدهاي حاصل از آنها متعلق به دانشگاه می باشد ولی حقوق معنوي پدید آورندگان محفوظ خواهد بود.

ماده ۲- انتشار مقاله یا مقالات مستخرج از پایانامه/ رساله به صورت چاپ در نشریات علمی و یا ارائه در مجامع علمی باید به نام دانشگاه بوده و با تایید استاد راهنمای اصلی، یکی از اساتید راهنما، مشاور و یا دانشجو مسئول مکاتبات مقاله باشد. ولي مسئولیت علمی مقاله مستخرج از پایان نامه و رساله به عهده اساتید راهنما و دانشجو می باشد.

تبصره: در مقالاتي که پس از دانشآموختگي بصورت ترکیبي از اطلاعات جدید و نتایج حاصل از پایاننامه/ رساله نیز منتشر میشود نیز باید نام دانشگاه درج شود.

ماده ۳- انتشار كتاب، نرم افزار و يا آثار ويژه (اثري هنري مانند فيلم، عكس، نقاشي و نمايشنامه) حاصل از نتايج پاياننامه/ رساله و تمامي طرحهاي تحقيقاتي كليه واحدهاي دانشگاه اعم از دانشكده ها، مراكز تحقيقاتي، پژوهشكده ها، پارك علم و فناوري و ديگر واحدها بايد با مجوز كتبي صادره از معاونت پژوهشي دانشگاه و براساس آئين نامه هاي مصوب انجام شود.

ماده ٤- ثبت انخراع و تدوین دانش فني و یا ارائه یافته ها در جشنوارههاي ملي، منطقهاي و بينالمللي كه حاصل نتايج مستخرج از پاياننامه/ رساله و تمامي طرحهاي تحقيقاتي دانشگاه بايد با هماهنگي استاد راهنما يا مجري طرح از طريق معاونت پژوهشي دانشگاه انجام گيرد.

ماده ۵– این آیینامه در ۵ ماده و یک تبصره در تاریخ۸۷/٤/۱ در شوراي پژوهشي و در تاریخ ۸۷/٤/۲۳ در میأت رئیسه دانشگاه به تایید رسید و در جلسه مورخ ۸۷/۷/۱۵ شوراي دانشگاه به تصویب رسیده و از تاریخ تصویب در شوراي دانشگاه لازمالاجرا است. «اينجانب..مينا نظرى دانشجوي رشتهيرق /الكترونيك ورودي سال تحصيلي٣٨٩.

مقطع .كارشناسى ارشد دانشكده مهندسى برق و كامپيوتر . متعهد مي شوم كليه نكات مندرج در آئين نامه حق مالكيت مادي و معنوي در مورد نتايج پژوهش هاي علمي دانشگاه تربيت مدرس را در انتشار يافته هاي علمي مستخرج از پايان نامه / رساله تحصيلي خود رعايت نمايم. در صورت تخلف از مغاد آئين نامه فوق الاشعار به دانشگاه وكالت و نمايندگي مي دهم كه از طرف اينجانب نسبت به لغو امتياز اختراع بنام بنده و يا هر گونه امتياز ديگر و تغيير آن به نام دانشگاه اقدام نمايد. ضمنا نسبت به جبران فوري ضرر و زيان حاصله بر اساس برآورد دانشگاه اقدام خواهم نمود و بدينوسيله حق هر گونه اعتراض را از خود سلب نمودم»

. . . . . . . . . . . . . .

امضا :....

تاریخ: ۹٫۷٫ ۱۳۹۱

#### آیین نامه چاپ پایاننامه (رساله)های دانشجویان دانشگاه تربیت مدرس

نظر به اینکه چاپ و انتشار پایان نامه (رساله)های تحصیلی دانشجویان دانشگاه تربیت مدرس، مبین بخشی از فعالیتهای علمی - پژوهشی دانشگاه است بنابراین به منظور آگاهی و رعایت حقوق دانشگاه،دانش آموختگان این دانشگاه نسبت به رعایت موارد ذیل متعهد میشوند:

ماده ۱: در صورت اقدام به چاپ پایان نامه (رساله)ی خود، مراتب را قبلاً به طور کتبی به «دفتر نشر آثارعلمی» دانشگاه اطلاع دهد.

ماده ۲: در صفحه سوم کتاب (پس از برگ شناسنامه) عبارت ذیل را چاپ کند:

«کتاب حاضر، حاصل پایان نامه کارشناسی ارشد نگارنده در رشته برق/الکترونیک است که در سال ۱۳۹۱

در دانشکده مهندسی برق و کامپیوتر دانشگاه تربیت مدرس به راهنمایی جناب آقای دکتر محمد کاظم مروج فرشی از آن دفاع شده است.»

ماده ۲: به منظور جبران بخشی از هزینههای انتشارات دانشگاه، تعداد یک درصد شمارگان کتاب (در هر نوبتچاپ) را به «دفتر نشر آثارعلمی» دانشگاه اهدا کند. دانشگاه میتواند مازاد نیاز خود را به نفع مرکز نشر درمعرض فروش قرار دهد.

ماده ۴: در صورت عدم رعایت ماده ۳، ۵۰٪ بهای شمارگان چاپ شده را به عنوان خسارت به دانشگاه تربیتمدرس، تأدیه کند.

ماده ۵: دانشجو تعهد و قبول می کند در صورت خودداری از پرداخت بهای خسارت، دانشگاه میتواند خسارت مذکور را از طریق مراجع قضایی مطالبه و وصول کند؛ به علاوه به دانشگاه حق میدهد به منظور استیفای حقوق خود، از طریق دادگاه، معادل وجه مذکور در ماده ۴ را از محل توقیف کتابهای عرضه شده نگارنده برای فروش، تامین نماید.

ماده ۶: اینجانب مینا نظری دانشجوی رشته برق/الکترونیک

مقطع كارشناسي ارشد تعهد فوق وضمانت اجرايي آن را قبول كرده، به آن ملتزم مي شوم.

نام و نام خانوادگی: مینا تطری تاریخ و امضا:

1891,149

پدرم به استواری کوه مادرم به زلالی چشمه همسرم به صمیمیت باران برادرم به مهربانی آفتاب

تقديم به

#### تشکر و قدردانی

با ستایش بیکران به پیشگاه آفریدگار مهربان؛ تقدیر و تشکر فراوان دارم از استاد ارجمندم جناب آقای دکتر مروج فرشی که اندیشه و روان مرا آموخت و نیز اساتید بزرگوار جناب آقای دکتر احمدی، جناب آقای دکتر فتحی و همکار و همراه خوبم جناب آقای مهندس فخرالدین نظری، همچنین سپاسگزارم به پیشگاه مادر، پدر، همسر، برادر و خانواده ارجمند همسرم که مرا در انجام این پایان نامه صمیمانه یاری دادند.

مینا نظری تیرماه ۱۳۹۱

#### چکیدہ

در این پژوهش به بررسی رفتار نوسانی سالیتون مکانی نوری در ساختارهایی با پتانسیل مختلط (با توزیع Scarf II) که دارای شرط تقارن مکان-زمان<sup>۱</sup> (PT) است، پرداخته میشود. بدین منظور، ابتدا با استفاده از ساختار نوار موجبر با روش فلاکت بلاخ<sup>۲</sup> آستانهی قسمت موهومی ضریب شکست در این موجبر بهدست آورده میشود. لازم بهیاد آوری است، چنانچه مقدار بخش موهومی از این مقدار آستانه بیشتر شود گذار فاز رخ میدهد و طیف انرژی مختلط خواهد شد. سپس با حل عددی معادله شرودینگر غیرخطی در این موجبر، به بررسی تاثیر شکل توزیع ضریب شکست موجبر بر فاز نور ورودی پرداخته و با استفاده از روش تبدیل فوریه با گامهای مجزا<sup>۳</sup>(SSFM) رفتار نوسانی نور در موجبر حقیقی و مختلط ورود نور بر رفتار نوسانی میشود. سپس عوامل موثر بر رفتار نور همچون اندازهی تیزی نور ورودی و مکان

دراین پایاننامه نشان داده شده است، برخلاف رفتار سالیتون مکانی در درون سلولهای حقیقی، حتی هنگامی که نور به طور عمود بر مرکز تقارن سلول PT فرود آمده وارد آن شود در حین انتشار رفتار نوسانی از خود نشان خواهد داد. اما اگر سالیتون ورودی از یک حد معین تیزتر باشد در هنگام ورود در مرکز تقارن به دام افتاده و نوسان نخواهد کرد. دراین صورت رفتار سالیتون را میتوان با پاسخ حالت پایدار معادله شرودینگر غیر خطی نیز توصیف کرد.

یکی از ویژگیهای بارز ساختارهای متقارن PT انتشار وارونناپذیر نور درآنهاست. در این پایاننامه، برای اولین بار این خاصیت وارون ناپذیری در یک سلول متقارن PT با رفتار نوسانی نور به

<sup>&#</sup>x27; Parity Time

<sup>&</sup>lt;sup>r</sup> Flouqet Bloch

Split Step Fourier Method`

تصویر کشیده می شود.در پایان، با بهره گیری از اثر وارون ناپذیری، ایزولاتوری با طول ۶mm و عرض ۲۰ m، برای مود اصلی نور ورودی با پهنای ۳ ۴ در طول موج ۳ ۱/۵۵ طراحی شده است. **کلیدواژه**: تقارن مکانی زمانی- سالیتون مکانی-موجبر Scarf II فهرست مطالب

| صفحه | عنوان                                            |
|------|--------------------------------------------------|
| الف  | فهرست علايم و نشانهها                            |
| ب    | فهرست شکلها و جداول                              |
| ۱    | فصل ۱– مقدمه                                     |
| ۷    | فصل ۲- ساختارهای متقارن پاریته زمان (PT)         |
| ۷    | ۲−۲– تقارن PT                                    |
| ۹    | ۲-۲- تعامد برای توابع ویژه PT                    |
| 11   | ۲-۳- ساختار نوری متقارن                          |
| ۱۳   | ۴-۲- استخراج معادله ديناميک باريکه از معادله موج |
| ۱۵   | ۲-۵- ساختار نوار شبکه های نوری متقارنPT          |
| ۱۹   | ۲-۶- جبر ضرب داخلی برای پتانسیل های متناوب PT    |
| ۲۰   | ۲-۷- تعامد در یک تک سلول PT :                    |
| ۲۲   | ۲-۸- ضریب های تصویر در شبکه نامحدود PT           |
| ۲۳   | ۲-۹-   نوسان توان در شبکه های نوریPT             |
| ۲۷   | فصل ۳- سالیتون های مکانی                         |
| ۲۷   | ۳-۱- معادله شرودینگر غیرخطی در محیط کِر          |
| ٣٠   | ۳-۲- حرکت نوسانی سالیتون                         |
| ٣٠   | ۳-۳- سالیتون مکانی در ساختار های متقارنPT        |
| ۳۲   | ۳-۳-۱- سالیتون مکانی در سلول متقارن PT           |

| ۳۶ | ۳-۳-۲- سالیتون مکانی در شبکه متناوب متقارن PT:                          |
|----|-------------------------------------------------------------------------|
| F1 | فصل ۴- روش های شبیه سازی                                                |
| ۴۱ | ۴-۱- روش تبدیل فوریه با گام های مجزا(SSFM)                              |
| ۴۳ | ۴-۲- روش تکرار عملگر اصلی                                               |
| ۴۵ | ۴-۳- روش فلاکت بلاخ برای رسم ساختار نوار                                |
| ۴۷ | ۴-۴- روش تکامل زمان-موهومی شتاب یافته (AITEM)                           |
| ۴۹ | فصل ۵- رفتار سالیتون درمحیط ناهمگن متقارن پاریته زمان (PT)              |
| ۴٩ | ۱−۵- موجبر Scarf II:- موجبر                                             |
| ۵۱ | Scarf II: موجبر حقيقى ١-١-٥- موجبر حقيقى                                |
| ۵۵ | ۲-۱-۵ موجبر مختلط متقارن PT به فرمScarf II:                             |
| ۵۶ | ۵-۱-۲-۱- نقطه آستانه خطی برای موجبر Scarf II                            |
| ۵۸ | ۵-۱-۲-۲- شتاب در موجبر مختلط                                            |
| ۵۹ | ۵-۱-۲-۳- اثر ترم موهومی ضریب شکست موجبر در حالت تحریک از مرکز           |
| ۶۴ | ۵-۱-۲-۴- اثر تیزی نور وارد شده به موجبر در حالت تحریک از مرکز           |
| ۶۸ | ۵-۱-۲-۵ اثر نقطه تحریک نور                                              |
| ٧۶ | ۵-۲- طراحی افزاره ای مبتنی بر رفتار نوسانی نور در موجبر متقارن Scarf II |
| ۷۷ | ۵-۳- سوییچ مکانی ۲×۲ مبتنی بر ساختار متقارن PT                          |
| ۷۸ | ۵-۳-۱- طراحی سوییچ مکانی متقارن PT                                      |
| ۷۸ | ۵-۳-۲- فرمولبندی                                                        |
| ۸۳ | فصل ۶- نتیجه گیری و پیشنهادات                                           |
| ۸۳ | ۶-۱-۶ نتیجه گیری                                                        |
| ٨۴ | ۲-۶- پیشنهادات                                                          |

| ٨۶ | فهرست مراجع                |
|----|----------------------------|
| ۸۸ | واژه نامه فارسی به انگلیسی |
| ۹۱ | واژه نامه انگلیسی به فارسی |

| ن اختصاری | علامت |
|-----------|-------|
|-----------|-------|

| $\hat{p}$      | اوپراتور تکانه            |
|----------------|---------------------------|
| V              | پتانسیل                   |
| Ψ              | تابع موج                  |
| К              | ثابت كوپلينگ              |
| m              | جرم                       |
| Z              | جهت انتشار                |
| $\widehat{T}$  | عملگر زمان                |
| Н              | عملگر هميلتونين           |
| χ              | پذیرفتاری غیر خطی         |
| ε <sub>o</sub> | ثابت گذردهی فضای آزاد     |
| S              | چگالی شار-توان عرضی       |
| D              | چگالی شار میدان نوری      |
| С              | سرعت نور در فضای آزاد     |
| γ              | ضریب بهره                 |
| 0              | ضریب نفوذ پذیری فضای آزاد |
| L <sub>c</sub> | طول کوپلینگ               |
| Р              | عملگر پاریته              |
| ω              | فرکانس زاویهای            |
|                |                           |

| یان صفحه                                                                                                                                          | عنو          |
|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| قادیر ویژه انرژی معادله (۲−۲) بر حسب تغییرات <b>۶</b> [۲۵]۸                                                                                       | شکل ۲– ۱– م  |
| ىقايسە دقيق معادلات شرودينگر(سمت چپ) و پيرا محورى(سمت راست)                                                                                       | جدول ۲-۱-۰   |
| وزيع ضريب شكست بر اساس تقارنPT                                                                                                                    | شکل ۲– ۲– ت  |
| a) اجزای حقیقی(خطوط ممتد) و موهومی(خط چین) یک شبکه متقارن PT با Vo=-Vo ، (b)ساختار نوار                                                           | شکل ۲- ۳- (  |
| (دو باند اول) برای یک پتانسیل برای مقادیر مختلف بهره/تلفات برای ۷٫۳ = V₀ (خط چین) و ۷٫۵ = V₀                                                      |              |
| (خط ممتد) ،(c) قسمت حقیقی دو باند اول برای پتانسیل ۵۸/۸ v = (d) ، (d)قسمت موهومی دو باند اول                                                      |              |
| ۱۶ برای یک پتانسیل ۸۵ $V_{\rm o}=\cdot/$ ۸۵ برای یک پتانسیل                                                                                       |              |
| ندت پروفیل های مدهای FB نرمالیزه شده باند اول شبکه متقارن PT برای مقادیر مختلف . $V_o$ و اعداد موج                                                | شکل ۲- ۴- ۵  |
| (k). برای ۷٫ه ۴۰/۴۹ ( زیر آستانه PT ) مدهای FB با اعداد موج بلاخ (a) ۹۰– $k=$ ۰ (b) (b) (k= ۰۱ (a)). (k)                                          |              |
| چین)، ۱۵/۰۰ = k (خطوط ممتد), (k=۰ (c). برای نقطه ۷۵/۵۰ V₀ =۰/۸۹ بالای نقطه گذار فاز ، (d) (e).k=۰۱ (d                                             |              |
| k=۰/۵ (مد FB باند دوم) (خط چین)،k= ۰/۵ (خطوط ممتد)،k=۰ (f). در تمامی موارد بخش حقیقی                                                              |              |
| خطوط پتانسیل پریودیک (نقطه چین های ممتد)[۲۷]                                                                                                      |              |
| گوی شکست در شبکه متقارن PT تحت تحریک باریکه پهن، برای ۲۹/۴۹ (زیر نقطه گذار فاز). تغییرات                                                          | شکل ۲– ۵– ۱۱ |
| شدت دو باریکه با زاویه ورودی متفاوت، که منجر میشود به (a) الگوی هلالی شکل، (b) تجزیه شدن به ۳                                                     |              |
| باریکه مجزا. نمودار ضریب های تصویر متناظر برای این دو باریکه به ترتیب برای (c) باند اول(خط ممتد)،                                                 |              |
| باند دوم(نقطه چین)، (d) باند اول(نقطه-خط چین)، باند دوم (نقطه چین)، باند سوم(خط ممتد). نوسانات                                                    |              |
| توان، با توجه به فاصله انتشار،(e)،(f)، به ترتیب برای باریکه های ورودی (a)،[۲۷(b)]                                                                 |              |
| سمت حقیقی و موهومی میدان در موجبری با توزیع Scarf II به ازای مقادیر ۷٫۵=۱٫Wo=۰/۴۵                                                                 | شکل ۳– ۱: قد |
| ۳۵ $V_0 = 1, W_0 = 1/40$ به ازای مقادیر Scarf II شار موج در راستای z در موجبری با توزیع                                                           | شکل ۳– ۲:انت |
| گالی شار توان در راستای z در موجبری با توزیع Scarf II به ازای مقادیر z مقادیر z در موجبری با توزیع Scarf II گالی شار توان در راستای z در موجبری ا | شکل ۳- ۳:چاً |

| شکل ۳- ۴: قسمت حقیقی و موهومی میدان در موجبری با توزیع متناوب متقارن با معادله (۳–۲۵) به ازای V <sub>o</sub> =۱                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $Ψ_{o} = \cdot / ε_{\Delta}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| شکل ۳- ۵:انتشار موج در راستای z در موجبری با توزیع متناوب متقارن با معادله (۳–۲۵) به ازای ۲۵–۴۸ $V_{ m o}$ =۱, $W_{ m o}$ =۰/۴۵ (۲۵–۳) شکل ۳-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| شکل ۳- ۶:چگالی شار توان در راستای z در موجبری با توزیع متناوب متقارن با معادله (۳-۲۵) به ازای ای Vo = ۱٫                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ۳۸ $W_{\rm o} = \cdot / \epsilon_{\Delta}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| شکل ۳- ۷: قسمت حقیقی و موهومی میدان در موجبری با توزیع متناوب متقارن با معادله (۳-۲۵) به ازای الامی ا                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $W_{\rm o} = \cdot / \mathcal{P}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ۳۹ $V_{ m o}$ =۱, $W_{ m o}$ =۰/۶ انتشار موج در راستای $z$ در موجبری با توزیع متناوب متقارن با معادله (۳–۲۵) به ازای $z$ /۰ –۳                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| شکل ۳- ۹: چگالی شار توان در راستای z در موجبری با توزیع متناوب متقارن با معادله (۳–۲۵) به ازای V <sub>o</sub> =۱, (۲۵–۳)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $\mathfrak{F}$ $W_O = \cdot / \mathfrak{F}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| شکل ۴- ۱: نمودار مورد استفاده در شبیه سازی به روش فوریه به همراه پله های جزئی(SSFM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| شکل ۵-۱ : توزیع موجبر Scraff II حقیقی با پارامترهای ۵۰/۰۰ و $V_r$ و $V_r$ -۱-۵                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| شکل ۵-۲ : توزیع میدان ورودی سالیتون برای موجبر Scraff II با قسمت ۷٫۵ = ۷٫۰ و ۰ = ۷٫                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| شکل ۵-۳ : انتشار میدان سالیتون برای موجبر حقیقی Scraff II با ۵۰/۰ = $V_r$ و ۱ $\eta$ و ۱ $\eta$ به ازای مکان های                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ورودی متفاوت (a) ۲۰۰۸۵ (c) X <sub>o</sub> =-۰/۸۵ (b) X <sub>o</sub> =۰ (a) ورودی متفاوت                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ۵۵ شکل ۵-۴ : توزیع شتاب برای موجبر حقیقی Scraff II به ازای ۵۰/۰۰ $V_r$ = ۰، $V_1$ = ۰/۰۵ شکل ۵۵.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| شکل ۵-۵ : موجبر Scraf II به ازای ۵۰/۰۵ $V_1 = V_1 = V_1 + V_1$ شکل ۵-۵ : موجبر Scraf II شکل ۵-۵ ا                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| شکل ۵-۶ : قسمت حقیقی ساختار نوار موجبر مختلط Scraff II به ازای $V_r = 1/T$ (a) $V_r = 1/V_r^{th}$ (b) شکل ۵-۶ : قسمت حقیقی ساختار نوار موجبر مختلط Scraff II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $\Delta Y \dots V_{r} = 1/\Delta > V_{r}^{th} (c) (b)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| شکل ۵-۷ : میدان ورودی سالیتون برای موجبر Scraff II به ازای ۵۰/۰ = $V_r$ و ۵/۰۵ – $V_r$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| شکل ۵–۵ : (a) ضریب فاز (b) مکان متوسط سالیتون در موجبر Scraff II به ازای ۱ ( -۹ ، $X_{ m o} = \cdot$ ، $X_{ m o} = \cdot$ ، ( a) : ۸–۵ شکل ۵–۵ ( a) شکل ۵–۸ ( b) شکل ۵–۸ ( c) ( c |

| ۶. | · | = · . | . •/•۵. •/۱. • /۲ |  |
|----|---|-------|-------------------|--|

| ، $V_{r}=\cdot/\cdot \Delta(\mathbf{a})$ به ازای $\eta=1$ ، $\eta=1$ و $V_{r}=\cdot/\cdot \Delta(\mathbf{a})$ به ازای $V_{r}=\cdot/\cdot \Delta(\mathbf{a})$ به ازای $V_{r}=\cdot/\cdot \Delta(\mathbf{a})$ به ازای $V_{r}=\cdot/\cdot \Delta(\mathbf{a})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $V_{r} = \cdot V_{r} (d) \cdot V_{r} = \cdot V_{r} (b)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| شکل ۵–۱۰ : توزیع سه بعدی انتشار میدان سالیتون در موجبر Scraff II به ازای $N_{o}=$ ۰، $V_{1}=$ ۰، $V_{1}=$ ۰، ۲ و $X_{o}=$ ۰، ۲                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ۶۴ <i>V</i> r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| شکل ۵–۱۱ : ضریب فاز برای سالیتون در موجبر Scraff II به ازای $V_{0} = \cdot , V_{r} = \cdot , V_{$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <i>۶</i> ۵η                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| = ۰/۵، ۱، ۱/۵ و $V_1 = \cdot/\cdot \delta$ ، $X_o = \cdot$ ، $V_r = \cdot/\iota$ به ازای Scraff II و ۱/۱، ۱، ۵/۱ و $V_1 = \cdot/\iota$ و ۱/۱، ۱، ۵/۱ و ۱/۱، ۱/۱ و ۱/۱، ۱/۱ و ۱/۱، ۱، ۵/۱ و ۱/۱، ۱/۱ و ۱/۱ و ۱/۱، ۱/۱ و ۱/۱، ۱/۱ و ۱/۱ و ۱/۱، ۱/۱ و ۱/۱، ۱/۱ و ۱/۱، ۱/۱ و ۱/۱، ۱/۱ و ۱/۱ و ۱/۱، ۱/۱ و ۱/۱ و ۱/۱، ۱/۱ و ۱/۱ و ۱/۱ و ۱/۱ و ۱/۱، ۱/۱ و ۱/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| γγη                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| شکل ۵–۱۳: توزیع انتشار برای میدان سالیتون در موجبر Scraff II به ازای ۲۰۱۰ ، ۲۰ م ، ۲۰ م ۷۱ = ۷۱ و (۵)۰۱ (۵)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| شکل ۵-۱۴ : (a) ضریب فاز(b)مکان متوسط (c) توزیع انتشار برای میدان سالیتون در موجبر Scraff II به ازای                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $\gamma = 1/\gamma \Delta_{\mathcal{I}} = \cdot V_{\mathcal{I}} = \cdot/\gamma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| شکل ۵–۱۵ : ضریب فاز برای سالیتون در موجبر Scraff II به ازای ۵۰/۰۰ - $X_o = X_o =$ و $\eta = X_o =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $\mathcal{P}\lambda$ $V_{r} = \cdot \cdot \cdot  \Delta $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| شکل ۵-۱۶ : مکان متوسط برای سالیتون در موجبر Scraff II به ازای ۲۰/۰۵ ، ۷٫۵-۰ = ۲٫۰ و ۲٬۰۰/۳ و ۰/۲٬۰/۴                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\mathcal{F}^{q} = \mathbf{r} \cdot \mathbf{r} / \mathbf{r}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $v \cdot V_{r} = \cdot/r, \eta = 1$ و $X_{0} = -\cdot/\lambda$ ، $V_{1} = \cdot/\cdot\delta$ به ازای ۲۰۰۵ ( $V_{1} = -\cdot/\lambda$ و $X_{0} = -\cdot/\lambda\delta$ ( $V_{1} = -\cdot/\lambda\delta$ ) شکل ۲۰۵۵ ( $V_{1} = -\cdot/\lambda\delta$ ) به ازای ۲۰۵۵ ( $V_{1} = -\cdot/\lambda\delta$ ) ( $V_{1} =$ |
| شکل ۵–۱۸ : توزیع انتشار برای میدان سالیتون در موجبر Scraff II به ازای ۸۵، $V_1$ =۰/۸۵ ، $V_2$ =۰/۸۵ و                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $V_{Y} = \cdot/\Upsilon (d),  V_{Y} = \cdot/\Upsilon (c),  V_{T} = \cdot/\Upsilon (b),  V_{T} = \cdot/\cdot\Delta(a)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| شکل ۵–۱۹ : توزیع سه بعدی برای سالیتون در موجبر Scraff II با ۵۰/۰۵ ، $V_0 = + \cdot / \lambda$ ه ۲۰ د موجبر ۲ د موبر ۲ د موجبر ۲ د موجبر ۲ د موبر ۲ د موجبر ۲ د موجبر                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| شکل ۵-۲۰ : (a) ضریب فاز(b) مکان متوسط و توزیع انتشار برای میدان سالیتون در موجبر Scraff II به ازای ، V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $V \mathfrak{F}_{\dots, W_{T}} = \cdot/\mathfrak{T}(\mathfrak{f}),  V_{T} \mathfrak{e} \cdot/\mathfrak{T}(\mathfrak{e}, V_{T} \mathfrak{e} \cdot/\mathfrak{d}),  V_{T} \mathfrak{e} \cdot/\mathfrak{d}(\mathfrak{c}) \mathfrak{g} = \mathfrak{h} \eta X \mathfrak{e} \mathfrak{e} \cdot \mathfrak{h} \mathfrak{d} \qquad \mathfrak{e} \mathfrak{e} \cdot/\mathfrak{d} \mathfrak{d}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ۳ شکل ۵–۲۱ : توزیع انتشار میدان سالیتون در موجبر Scraf II به ازای ۹، $\chi_0 = + \cdot/۸۵$ ، ۷، – + ۱ $\eta$ (۷ = $V_r$ و $V_r = V_r$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

| ) توزیع انتشار نور تحریک | شکل ۵-۲۲ : (a) ضریب فاز (b) توزیع انتشار نور تحریک شده از ورودی یک (۵. ا $X_o$ = -۱.۵) ( |
|--------------------------|------------------------------------------------------------------------------------------|
| ۷۷۲۷ ،و ۷۹               | شده از ورودی دو (۲۰.۵ Xo = +۱.۵ برای سالیتون در موجبر Scraff II با ۰/۱=                  |
| Υλ                       | شکل ۵-۲۳: شمای یک کوپلر متقارن ۲۲ × ۲                                                    |
|                          |                                                                                          |

شکل۵-۲۴: نمایش (الف) سه بعدی و (ب) دو بعدی، شدت بهنجار شده سیگنال نوری هنگام طی مسیر In۱ به Out۲ و نمایش (ج) سه بعدی و (د) دو بعدی، شدت بهنجار شده سیگنال نوری هنگام طی مسیر In۲ به Out۱ در سوئیچ مکانی شکل ۱ همگی با طول L = 24.8 mm به هنگام خاموش بودن پمپ خارجی ( $0 \approx \gamma$ )......

شکل۵-۲۵: نمایش (الف) سه بعدی و (ب) دو بعدی، شدت بهنجار شده سیگنال نوری هنگام طی مسیر In۱ به Out۱ و نمایش (ج) سه بعدی و (د) دو بعدی، شدت بهنجار شده سیگنال نوری هنگام طی مسیر In۲ به Out۲ در سوئیچ مکانی شکل ۱ با طول L = 24.8 mm به هنگام روشن بودن پمپ خارجی و بهازای A۲.<sup>γ = 5.66</sup>

## فصل ۱- مقدمه

بنابر واقعیت موجود در طبیعت مشهود است که اندازه گیری کمیتهای فیزیکی، باید مقادیر حقیقی را نتیجه دهد. در مکانیک کوانتومی این کمیتها به مقدار ویژه ی<sup>۱</sup> عملگرها<sup>۲</sup> مربوط می شوند و برای حقیقی بودن اندازه گیریها لازم است که مقادیر ویژه یهمه یعملگرها کمیتهایی حقیقی باشند. تئوری فیزیک کوانتوم بر پایه چند اصل اولیه پیاده شده و توسعه پیدا کرده است. اولا از آنجایی که طیف انرژی یک مفهوم فیزیکی است و هر مفهوم فیزیکی قابل اندازه گیری باید مقدار حقیقی نتیجه دهد لذا باید طیف انرژی حقیقی باشد. ثانیا به دلیل اینکه تمام سیستمها می خواهند به پایدارترین حالتشان برسند، طیف انرژی پائین به عبارتی پایدارترین حالت انرژی پذیرفته می شود. ثالثا به منظور تضمین اصل بقای احتمال، عملگر تغییرات زمانی<sup>۳</sup> آنها باید واحد باشد، به عبارت دیگر در گذر زمان نتایج اندازه گیری دستخوش تغییرات نشود[۲-۱].

در مکانیک کوانتوم برای بدست آوردن طیف انرژی از معادله شرودینگر استفاده می شود. معادله شرودینگر زمانی (۱–۱) دارای عملگر همیلتونین (شامل مجموع انرژی های جنبشی و پتانسیل معادله (۱–۲)) به صورت زیر بیان می شود :

$$\left(\frac{-h^2}{2m}\nabla^2 + V(r,t)\right)\psi(r,t) = ih\frac{\partial}{\partial t}\psi(r,t)$$

$$\hat{H} = \left(\frac{-h^2}{2m_0}\nabla^2 + V(r,t)\right)$$

$$(\Upsilon - \Upsilon)$$

' Eigen value

<sup>r</sup> Operator

<sup>\*</sup> Time Evolution

در مورد عملگر همیلتونین  $\widehat{H}$  مقدار ویژه ی، همان طیف انرژی است.

$$E \psi(t) = i\hbar \frac{\partial}{\partial t} \psi(t) \tag{(7-1)}$$

در مکانیک کوانتوم اثبات میشود مقادیر ویژه مرتبط با هر عملگری زمانی حقیقی هستند که آن عملگر هرمیتی باشد. طبق تعریف عملگر A زمانی هرمیتی است که  $\hat{A} = \hat{A}$ . این بدان معناست که عملگر A و در حالت کلیتر ماتریس همیلتونین A زمانی هرمیتی است که ماتریس A با مزدوج ترانهاده خود برابر باشد که در این صورت حتما طیف انرژی حقیقی است[۳]. از طرفی این نیز پذیرفته شده بود که یک همیلتونی غیرهرمیتی در حالت کلی اولا به دلیل نتیجه دادن طیف انرژی مختلط و ثانیا عدم رعایت اصل بقای احتمال مورد قبول نیست.

در سال های اخیر بندر <sup>۱</sup> و همکارانش توانستند مکانیک کوانتوم را در صفحه مختلط بیان کنند یعنی توزیع پتانسیل مختلط را نیز در مکانیک کوانتومی بررسی کنند، چیزی که در عالم واقعیت معنا و مفهوم فیزیکی ندارد[۴٫۵]. آنها طیف بعضی از همیلتونینهای غیرهرمیتی را بررسی کردند و فهمیدند که تعداد زیادی از همیلتونینهای غیرهرمیتی میتوانند به طور کامل طیف حقیقی را تولید کنند.

<sup>7</sup> آنها متوجه شدند که این همیلتونینها دارای ویژگی خاصی هستند؛ بهطوری که شرط دیراک در این همیلتونینها جای خود را به شرط تقارن خاصی داده است و در همه این همیلتونینها غیر هرمیتی مشترک است. این ویژگی خاص با عنوان تقارن پاریته زمان<sup>۳</sup> (PT) در مکانیک کوانتوم شناخته شده است. از آنجایی که پتانسیل مختلط در عالم واقعیت معنای فیزیکی ندارد بنا بر مدل سازی [۴] این شده است. از آنجایی که پتانسیل مختلط در عالم واقعیت معنای فیزیکی ندارد بنا بر مدل سازی [۴] می پتانسیل مختلط نوری در موجبر توسط مناطق تلفاتی و گینی قابل دستیابی است. این ضریب شکست

<sup>&#</sup>x27; Bender

<sup>&</sup>lt;sup>r</sup> Dirac

<sup>&</sup>lt;sup>\*</sup> Parity Time