لسم الثرار من الرحم

تعهد نامه اصالت اثر

اینجانب رحمان کلهر متعهد می شوم که مطالب مندرج در این پایان نامه که حاصل کار پژوهشی اینجانب است و دستاوردهای پژوهشی دیگران که در این پژوهش از آنها استفاده شده است، مطابق مقررات ارجاع و در فهرست منابع و ماخذ ذکر گردیده است. این پایان نامه قبلا برای احراز هیچ مدرک هم سطح یا بالاتر ارائه نشده است. در صورت اثبات تخلف (در هر زمان) مدرک تحصیلی صادر شده توسط دانشگاه از اعتبار ساقط خواهد شد.

کلیه حقوق مادی ومعنوی این اثر متعلق به دانشگاه تربیت دبیر شهید رجایی است.

نام ونام خانوادگی دانشجو

رحمان كلهر

دانشکده مهندسی برق وکامپیوتر

بهبود توليد طيف ابرپيوستار با فيبرهاي كريستال فوتوني

نگارش

رحمان كلهر

استاد راهنما : دکتر محمود صيفوري

پایان نامه برای دریافت درجه کارشناسی ارشد

در رشته مهندسی برق - الکترونیک

شهریور ۱۳۹۳

15,515 ac IIV : June

دانتگاه ترمیت دسیرشید رجایی

بسمه تعالى

صورتجلسه دفاع پایاننامه تحصیلی دوره کارشناسی ارشد

با تأییدات خداوند متعال و با استعانت از حضرت ولی عصر (عج) جلسه دفاع از پایاننامه کارشناسی ارشد آقای رحمان کلهر رشته مهندسی برق– الکترونیک تحت عنوان «بهبود تولید طیف ابر پیوستار با فیبرهای کریستال فوتونی» در تاریخ ۱۳۹۳/۰۷/۱۶ با حضور هیأت محترم داوران در دانشگاه تربیت دبیر شهید رجایی برگزار گردید و نتیجه به شرح ذیل میباشد.

المضاء	مرتبه علمی	نام و نام خانوادگی	اعضاء
que	استادیار	دكتر محمود صيفورى	استاد راهنما
2	دانشيار	دکتر سعید علیایی	داور داخلی
(جن طني	استاديار	دكتر ابوالفضل چمن مطلق	داور خارجی
622	دانشيار	دکتر سعید علیایی	نماینده تحصیلات تکمیلی دانشگاه

دکتر شهریار شیروانی مقدم رئیس دانشکرده مهندسی برق و کامپیوتر

> تهران،لویزان،کد پستی: ۱۵۸۱–۱۶۷۸۸ صندرق پستی: ۱۶۲–۱۶۷۸۵ تلفن: ۹-۲۹٬۰۰۶ نگس: ۲۲۹٬۰۰۳ Email: sru@sru.ac.ir www.srttu.edu

مولای متقیان امام علی علیہ السلام:

(من علمنی حرفافقد صبرنی عبد)

بر خود لازم میدانم از زحمات اساتید گرانقدرم در دانشگاه شهید رجایی و همچنین آقای دکتر حامـد سقایی و رهنمودهای بسیار سازنده و مفیدشان، تشکر و قدردانی نمایم. سلامتی و توفیق روزافزون ایشان را از درگاه خداوند متعال خواهانم.

چکیدہ

طيف ابرپيوستار يک طيف همدوس با پهناي باند وسيع است که با عبور يک پالس فوق العاده کوتاه با توان نسبتا بالا، از یک فیبر نوری، به دلیل ظاهر شدن اثرات غیر خطی در آن تولید می شود. بهینه سازی این طیف با فیبر کریستال فوتونی و کنترل دو پارامتر پاشیدگی و اثرات غیرخطی، امکان پذیر است. اگر نسبت قطر حفرههای هوا به ثابت شبکه کوچکتر شود، یاشیدگی تخت با کمینه ممکن حاصل شده و با افزایش اندازه حفرهها، شیب پاشیدگی کاهش یافته ولی تعداد مودهای انتشار و ضریب غیرخطی و تلفات محصورشدگی افزایش می یابد. بنابراین با مصالحه بین پاشیدگی، تعداد مودها، تلفات و اثرات غیر خطی می توان محدوده طیف ابریپوستار را افزایش داد. در این پایان نامه، نقش ضرایب مراتب بالای پاشـیدگی و اثرات غیرخطی شامل، مدولاسیون خودفازی، پراکندگی رامان و اثر خودتیزی در معادله غیر خطی شرودینگر بررسی و با استفاده از ساختار شش وجهی فیبر کریستال فوتونی در بستر سیلیکا، با طراحی مناسب یاشیدگی موجبر، یاشیدگی ماده خنثی شده و در ساختار اول با استفاده از قطر حفرههای هوایی یکسان ۰/۴۱ میکرومتر و ثابت شبکه ۱میکرومتر، مقدار بیشینه پاشیدگی(ps/nm.km و شـیب نسـبتا تخت در ناحیه یاشیدگی غیرعادی و محدوده وسیع ۱/۱ میکرومتر تا ۱/۷ میکرومتر، بصورت تک مود، طراحی و با عبور یک پالس لیزری ۲۸ فمتوثانیهای و توان بیشینه ۱۰ کیلو وات در این فیبر به طول ۳۰ سانتیمتر، طیف ابرییوستار در محدوده پنجره مخابراتی ۱/۴۲ میکرومتر تا ۱/۶۵ میکرومتر شبیهسازی شده است. در طراحی دوم نیز، با حفرههای غیریکسان و ثابت شبکه ۲/۰۸ میکرومتر، مقدار بیشینه یاشیدگی (V(ps/nm.km) در محدوده ۱/۲ میکرومتر تا ۱/۶ میکرومتر ضمن عملکرد تک مود و شیب تخت، ضریب غیرخطی ۰/۰۱۹ حاصل شد و با عبور یک پالس لیزری ۲۸ فمتوثانیه ای و توان بیشینه ۵ کیلو وات در چنین فیبری به طول ۱۵ سانتیمتر، طیف ابرپیوستار در محدوده پنجره مخابراتی ۱/۴ میکرومتر تا ۱/۶۲ میکرومتر شبیهسازی شده است.

کلمات کلیدی :

ابرپيوستار، اثرات غيرخطي، پاشيدگي تخت، فيبر كريستال فوتوني، معادله غيرخطي شرودينگر

صفحه

۱	فصل اول معرفی طیف ابرپیوستار
۲	۱–۱– مقدمه
۲	۲-۱- تاریخچه ای از تولید طیف ابرپیوستار
۸	۱ –۳ – کاربردها:
۹	۱-۴- پاشیدگی در فیبر نوری
۱۳	۱–۵– اثرات غیر خطی
۱۳	۱-۶- نتیجه گیری
۱۴	فصل دوم ساختار فیبر کریستال فوتونی
۱۵	۱-۲ – مقدمه
۱۵	۲-۲- ساختار فیبر کریستال فوتونی
۱۶	۲-۲-۱- کریستالهای فوتونی یک بعدی
۱۷	۲-۲-۲- کریستالهای فوتونی دو بعدی
۱۸	۲-۲-۳ ساختار
۲۱	۲-۳- انواع فیبرهای کریستال فوتونی :
۲۱	۲–۳–۱– نوع اول، هدایت بر اساس شکاف باند فوتونی
۲۲	۲-۳-۲ نوع دوم، هدایت بر اساس اصل بازتاب داخلی کلی
۲۵	۲-۴- نتیجهگیری
۲۶	فصل سوم اثرات غیر خطی در فیبر نوری
۲۷	۳-۱- مقدمه
۲۷	۳-۲- عوامل ایجاد اثرات غیرخطی در فیبر نوری
۲۷	۳-۲-۱ اعوجاح ابر الكتروني
۲۹	۳-۲-۲- جهت گیری مولکولی
۳۰	٣-٢-٣ الكتروتنگش
۳۰	۳-۲-۴- جذب تشدیدی
۳۰	۳-۲-۵- اثرات حرارتی
۳۱	۳-۳- انواع اثرات غیرخطی

فهرست مطالب

۳–۳–۲– اثرات کر نوری ۳۳
۴-۳- کاربردها
۳–۴–۲– چرپ شدگی پالس ۳۸
۳-۴-۲- فشرده سازی پالس :۴۱
۳–۴–۳– سالیتون
۳-۴-۴- تاثیرات همزمان پاشیدگی و اثرات غیرخطی در فیبر نوری
۳-۵- نتیجه گیری
فصل چهارم بررسی معادله غیر خطی شرودینگر۴۵
۴۶ – ۱ – مقدمه
۴–۲– معادله انتشار پالس در محیط غیرخطی۴۶
۴-۳- معادله شرودینگر غیرخطی ۵۲
۴-۴- تحلیل عددی معادله غیرخطی شرودینگر۵۲
۴–۵- تاثیر ضرایب معادله شرودینگر غیرخطی۵۴
۴–۵–۱ پاشیدگی
۲–۵–۴ تلفات۵۴
۴–۵–۳– مدولاسیون خودفازی۵۵
۴-۵-۴ اثر رامان ۵۶
۴-۵-۵- اثرخودتیزی ۵۶
۴–۵–۶– نقش سالیتون ۵۸
۴–۵–۷– واپاشی سالیتونهای مرتبه بالا ۵۸
۴-۶- نتیجه گیری ۵۸
فصل پنجم شبیه سازی تولید طیف ابرپیوستار در ساختار پیشنهادی
۵–۱– مقدمه
۵–۲–ارائه ساختار پیشنهادی۶۱
۵-۲-۱- معرفی ساختار شش وجهی اول با قطر حفرههای یکسان
۵-۲-۲- معرفی ساختار شش وجهی حفرههای نابرابر۸۰
۵–۳- نتیجه گیری
فصل ششم جمع بندی و پیشتهادها۹۹

۱۰۰	۶–۱–جمع بندی
۱۰۱	۲-۶- پیشنهادها
۱۰۲	پيوست ١
11.	منابع

فهرست جدولها

		٠	
A	~	A	^
4			-
_			_

جدول ۱–۱ محدوده طول موج در باندهای سیستم مخابراتی [۳]۸	
جدول ۳–۱ مقایسه ضریب شکست غیرخطی چند ماده مختلف [۱۹]۳۶	
جدول ۳–۲ بررسی پدیده غالب بین پاشیدگی و اثر غیرخطی در فیبرها نسبت به طول فیبر۴۳	
جدول ۵–۱ مقادیر رابطه اسلمیر برای سیلیکا مذاب [۴۲]	
جدول ۵–۲ مقایسه بهبود حاصل شده در طراحی فیبر بلور فوتونی ساختار شش وجهی با قطر حفرههای یکسان	
جدول ۵–۳ مقادیر شبیهسازی طیف ابرپیوستار در فیبر طراحی شده ساختار شش وجهی با قطرحفرههای یکسان	
جدول ۵–۴ مقایسه ضرایب بهبودیافته مراتب بالای پاشیدگی ساختار شش وجهی با قطر حفرههای نابرابر	
جدول ۵–۵ مقادیر شبیهسازی طیف ابرپیوستار در فیبر طراحی شده ساختار شش وجهی با قطرحفرههای نابرابر	

شکل ۱–۱ تولید طیف ابرپیوستار و تاثیر پالس ۱۰۰فمتوثانیهای در فیبری به طول ۷۵ سانتیمتر [۱۴]۳
شکل ۱–۲ طیف ابرپیوستار با پالس ۰/۵ نانو ژول، ۱۱۰ فمتو ثانیه در طولهای ۱ تا ۵ متر، در سال ۲۰۰۱ [۱۶]
شکل ۱–۳ نقش توان در منحنی الف) با طول موج پمپ ۱۰۵۰ نانومتر و ب) با طول موج پمپ ۷۹۰ نانومتر[۱]۶
شکل ۱–۴ نقش افزایش انرژی منبع پالس لیزر در گسترش طیف ابرپیوستار [۱۷]
شکل ۱–۵ تاثیر پالس ۸۵ فمتو ثانیهای، در فیبر ۱ متری برای عکسبرداری [۱]
شکل ۱–۶ تاثیر طول موج پمپ شده و ناحیه پاشیدگی بر تولید طیف ابرپیوستار [۱۸]۱۲
شکل ۲–۱ ساختار فیبرهای کریستال فوتونی یک بعدی، دو بعدی و سه بعدی [۲۰]۱۶
شکل ۲–۲ کریستال فوتونی بک بعدی با دوره تناوب a [۱۷]
شکل ۲–۳ساختار یک کریستال فوتونی دو بعدی با شکاف باند کامل [۲۴]۱۸
شکل ۲–۴ نمایه سطح مقطع یک فیبر کریستال فوتونی با ساختار شش وجهی [۳۲]۱۹
شکل ۲–۵ نمایه طولی یک فیبر کریستال فوتونی با ساختار شش وجهی [۱۲]۲۱
شکل ۲–۶ الف) انتشار نور بر اساس اصل بازتاب داخلی کلی و ب) انتشار نور بر اساس اصل شکاف باند فوتونی و بازتاب براگ [۲۳].
شکل۲–۷. مرز ناحیه عملکرد تک مود و چند مود در فرکانس نرمالیزه و نسبت وابستگی آن به طول موج و ثابت شبکه [۳۳].
شکل۲–۸.مرز ناحیه عملکرد تک مود و چند مود و نسبت وابستگی آن به دو پارامتر d/۸,λ/۸ [۳۳].
شکل ۲– ۹ منحنی نواحی تک مود، نسبت به ابعاد حفره و ثابت شبکه. اولین منحنی سمت

راست با قطر ۳۵/۰ و آخرین منحنی در سمت چپ قطر ۰/۵۵ میکرومتر [۱۲]۲۴
شکل ۲— ۱۰ مقایسه سه نوع فیبر کریستال فوتونی بر اساس نوع هدایت. الف) شکاف باند فوتونی و بازتاب براگ
شکل ۳–۱ تاثیر پاشیدگی غیرعادی واثر کر نوری بر شدت نور متغیر بازمان [۳۶]۴۰
شکل ۴–۱ الف) منحنی بهره رامان و جابجایی ۱۳ تراهرتزی فرکانس و ب) پاسخ زمانی اثر رامان در سیلیکا [۱]
شکل ۴–۲ نحوه تاثیر قدم به قدم اثرات خطی و غیرخطی [۱]۵۳
شکل ۴–۳ پهن شدگی یک پالس در اثر پاشیدگی مرتبه دوم در فاصلههای نرمال شده Z/L _D =2, Z/L _D =0
شکل ۴–۴ تغییر فاز و چرب فرکانسی در یک پالس گوسی [۳۶]
شکل ۴–۵ خودتیزی یک پالس گوسی بدون تاثیر سرعت گروه [۱]۵۷
شکل ۴–۶ خودتیزی، بدون تاثیر سرعت گروه، باعث پهن شدگی نامتقارن شده است [۱]۵۷
شکل ۵–۱ نمایه ساختار شش وجهی طراحی شده، با پرشدگی حفره های حلقه اول d=۰/۴۱μm , Λ=۱ μm اول
شکل ۵–۲ منحنی پاشیدگی ساختار شش وجهی قطر حفرههای یکسان برحسب طول موج فیبر کریستال فوتونی با پرشدگی حفره مرکزی و ابعاد $d= \cdot/9\mu m \;,\; \Lambda=1\;\mu m$
شکل ۵–۳ تاثیر پرشدگی حفرههای مرکزی،حلقه اول و حلقه دوم بر منحنی پاشیدگی در مقایسه با پرشدگی حفره مرکزی و حلقه اول ۶۵
شکل ۵–۴ منحنی پاشیدگی و قطرهای مختلف حفره ها با d=۰/۴۲ μm ،d=۰/۴۴μm ، d=۰/۴۱ و d=۰/۴۱ در ثابت شبکه Λ=۱/۰ μm۶۶
شکل ۵–۵ منحنی پاشیدگی سرعت گروه و قطرهای مختلف حفرهها با d=۰/۴۱ μm ، d=۰/۴۲ μm ، d=۰/۴۴ در ثابت شبکه Λ=۱/۰ μm ۰d=۰/۴۴
شکل ۵–۶ نقش ثابت شبکه۸=۱/۱μ۳ ،۸=۱/۰ μ۳ ،۸=۱/۹ و ۸=۰/۹ و ۸=۰/۸ بر منحنی
j

۶۷	پاشیدگی با قطرحفرههای هوایی ۴۱/۰ میکرومتر
۶۷	شکل ۵–۷ نقش ثابت شبکهΛ=۰/۹μm، Λ=۱/۰ μm ،Λ=۱/۱μm و Λ=۰/۹μm و μ پاشیدگی سرعت گروه با قطر حفرههای هوایی ۰/۴۱ میکرومتر
۶۸	شکل ۵–۸ نقش ثابت شبکه۸=۱/۰μm، ۸=۰/۷ μm، ۸=۱/۰μ و ۸=۰/۶μm و ۸=۰/۵ بر منحنی پاشیدگی با قطرحفرههای هوایی ۰/۴۱ میکرومتر
۶۸	شکل ۵–۹ نقش ثابت شبکهΛ=۰/۶μm، Λ=۰/۷ μm، Λ=۱/۰μm و Λ=۰/۵ μm و Δ=۰/۶μm بر منحنی پاشیدگی سرعت گروه با قطر حفرههای هوایی ۰/۴۱ میکرومتر
۶٩	شکل ۵–۱۰ منحنی ضریب شکست موثر برحسب طول موج، درساختار شش وجهی با قطر حفرههای یکسان
۶٩	شکل ۵–۱۱ سرعت گروه نسبت به مقدار طول موج درساختار شش وجهی طراحی شده قطر حفرههای یکسان
۷۰	شکل ۵–۱۲ برش عرضی سطح مقطع به همراه مود اصلی، درساختار شش وجهی طراحی شده قطر حفرههای یکسان
٧٠	شکل ۵–۱۳ منحنی پاشیدگی برحسب طول موج درساختار شش وجهی طراحی شده قطر حفرههای یکسان
۷۱	شکل ۵–۱۴ منحنی ضریب پاشیدگی مرتبه۲ برحسب طول موج، درساختار شش وجهی با قطر حفرههای یکسان
۷۱	شکل ۵–۱۵ منحنی ضریب پاشیدگی مرتبه۳برحسب طول موج، درساختار شش وجهی با قطر حفرههای یکسان
۷۲	شکل ۵–۱۶ نمودار تلفات برحسب طول موج با پر شدگی حلقه اول، درساختار شش وجهی با قطر حفرههای یکسان
٧۴	شکل ۵–۱۷ شبیهسازی طیف ابرپیوستار ساختار شش وجهی با قطرحفرههای یکسان مطابق مقادیر جدول ۵–۳ و توان بیشینه ۱کیلو وات و طول فیبر ۰/۱۵ متر
	شکل ۵–۱۸ شبیهسازی طیف ابرپیوستار ساختار شش وجهی با قطرحفرههای یکسان

	شکل ۵–۳۰ شبیهسازی طیف ابرپیوستار ساختار شش وجهی با قطرحفرههای یکسان
	مطابق مقادیر جدول ۵—۳ و با اعمال توان بیشینه ۱۰ کیلو وات و طول فیبر ۲/۳ متر و پهنای
٨٠.	يالس ١٠٠ فمتوثانيه
	شکل ۵–۳۱ نمایه ساختار شش وجهی با قطرحفرههای نابرابر جهت ایجاد پاشیدگی
۸١.	تخت [۴۷].
	شکل ۵–۳۲ نمایه ساختار شش وجهی با ایجاد حفرههای نابرابر جهت ایجاد پاشیدگی
٨٢.	تخت [۴۹].
	شکل ۵–۳۳ نمایه ضریب شکست موجبری ساختار شش وجهی شکل ۵–۳۲جهت ایجاد
۸۲.	پاشیدگی تخت [۴۹].
٨٢	شکل ۵–۳۴ نمایه ساختار شش وجهی با ایجاد حفره مرکزی جهت ایجاد پاشیدگی تخت [۴۸].
	شكل ٨-٨ ٣٨- ما منظم الختار ششر معمد المفاطم في كالرما المشرك الم
	شبکه μ m ۲/۰۸ و فطر حفره مرکزی $a_c=0.7$ μ m و حفرهها به ترتیب $a_1=1/26$ μ m ه.
٨٣.	$d_4 = \iota / \beta \mu m_i d_3 = 1 / \gamma \tau \mu m_i d_2 = 1 / \gamma \tau \mu m_i$
	Λ -Υ/ΥΔιμ, Λ -Υ/ΥΔιμ, Λ -Υ/Διμ, Λ -Υ/Διμ, Λ -Υ/Διμ, Λ -Υ/Διμ, Λ
	d = 1/2 wrum d = 1/2
	بر منحنی پاسید دی با قطر حفرههای نابت μπ، u ₁ - ۱/۵۴ μπ، u ₁ - ۱/۵۴ μπ، u ₃ - ۱/۱ μπ، u ₂ - ۱/۱ μπ، u ₁ - ۱/۵۴
٨۴.	$a_c = \cdot / \mathcal{F} \ \mu m$
	Λ =Υ/ΥΔμμα Λ =Υ/ΥΔμμα Λ =Υ/Δμμα Λ =Υ/Δμμα Δ. Λ
	$\mathbf{r}_{\mathbf{r}}$
۸٢.	$a_{c} - \frac{1}{2} \mu m_{a_{3}} - \frac{1}{2} \mu m_{a_{3}} - \frac{1}{2} \mu m_{a_{2}} - \frac{1}{2} \mu m_{a_{2}} - \frac{1}{2} \mu m_{a_{2}} - \frac{1}{2} \mu m_{a_{3}} - \frac{1}{2} \mu m_$
	شکا ۵–۳۸ نقش تغیب قط حفرههای دیف اول بر منحنی باشیدگر ، با ثابت نگه داشتن
	$d = \sqrt{2} \text{ um } d_{4} = \sqrt{2} \text{ um } d_{2} = \sqrt{77} \text{ um } d_{2} = \sqrt{77} \text{ um } d_{3} = \sqrt{77} \text{ um } d_{4} = \sqrt{77} \text{ um } d_{4$
Λω.	در تابت شبخه۸۳۱۱ ۲۹=۱/۰۸
	شکا ۵–۳۹ نقش تغیب قط حفرهای دیف اول بر منحنی باشیدگی سرعت گروه، با ثابت
	$d_4 = 1/8 \text{ µm} d_2 = 1/77 \text{ µm} d_2 = 1/77 \text{ µm} d_2 = 1/8 \text{ µm} d_$
	$\Delta = \frac{1}{2} + $
Λω.	، u _c -•/۶ µ۱۱۱ در نابت شبخهu _c -۰/۶ µ۱۱۱ در نابت

شکل ۵–۴۰ اندازه گیری ضریب شکست موثر ساختار شش وجهی با قطرحفرههای نابرابر۸۶
شکل ۵–۴۱ منحنی سرعت گروه در ساختار شش وجهی با قطرحفرههای نابرابر ۸۶
شکل ۵–۴۲ منحنی پاشیدگی در محدوده ۱ تا۱/۶ میکرومتر در ساختار شش وجهی با قطر حفرههای نابرابر
شکل ۵–۴۳ منحنی تلفات ساختار شش وجهی با قطرحفرههای نابرابر
شکل ۵–۴۴ منحنی ضریب پاشیدگی مرتبه ۲ ساختار شش وجهی با قطرحفرههای نابرابر۸۸
شکل ۵–۴۵ منحنی ضریب پاشیدگی مرتبه ۳ ساختار شش وجهی با قطرحفرههای نابرابر۸۸
شکل ۵–۴۶ شبیهسازی طیف ابرپیوستار ساختار شش وجهی حفرههای نابرابر مطابق مقادیر جدول ۵–۵، توان بیشینه ۱کیلو وات و طول فیبر ۰/۱۵ متر۹۱
شکل ۵–۴۷ شبیهسازی طیف ابرپیوستار ساختار شش وجهی حفرههای نابرابر مطابق مقادیر جدول ۵–۵، توان بیشینه ۱کیلو وات و طول فیبر ۱۵/۰ متر۹۱
شکل ۵–۴۸ شبیهسازی طیف ابرپیوستار ساختار شش وجهی حفرههای نابرابر مطابق مقادیر جدول ۵–۵و با اعمال توان بیشینه ۱کیلو وات و طول فیبر ۰/۳ متر
شکل ۵–۴۹ شبیهسازی طیف ابرپیوستار ساختار شش وجهی حفرههای نابرابر مطابق مقادیر جدول ۵–۵و با اعمال توان بیشینه ۱کیلو وات و طول فیبر ۰/۳ متر
شکل ۵–۵۰ شبیهسازی طیف ابرپیوستار ساختار شش وجهی حفرههای نابرابر مطابق مقادیر جدول ۵–۵ و با اعمال توان بیشینه ۵کیلو وات و طول فیبر ۰/۱۵ متر
شکل ۵–۵۱ شبیهسازی طیف ابرپیوستار ساختار شش وجهی حفرههای نابرابر مطابق مقادیر جدول ۵–۵و با اعمال توان بیشینه ۵کیلو وات و طول فیبر ۱۵/۰ متر
شکل ۵–۵۲ شبیهسازی طیف ابرپیوستار ساختار شش وجهی حفرههای نابرابر مطابق مقادیر جدول ۵–۵ و با اعمال توان بیشینه ۵کیلو وات و طول فیبر ۰/۳ متر
شکل ۵–۵۳ شبیهسازی طیف ابرپیوستار ساختار شش وجهی حفرههای نابرابر مطابق مقادیر جدول ۵–۵و با اعمال توان بیشینه ۵کیلو وات و طول فیبر ۲/۰ متر۹۴

شکل ۵–۵۴ شبیهسازی طیف ابرپیوستار ساختار شش وجهی حفرههای نابرابر مطابق مقادیر جدول ۵–۵ و با اعمال توان بیشینه ۱۰کیلو وات و طول فیبر ۱۵/۰ متر
شکل ۵–۵۵ شبیهسازی طیف ابرپیوستار ساختار شش وجهی حفرههای نابرابر مطابق مقادیر جدول ۵–۵و با اعمال توان بیشینه ۱۰کیلو وات و طول فیبر ۰/۱۵ متر
شکل ۵–۵۶ شبیهسازی طیف ابرپیوستار ساختار شش وجهی حفرههای نابرابر مطابق مقادیر جدول ۵–۵و با اعمال توان بیشینه ۱۰کیلو وات و طول فیبر ۰/۳ متر
شکل ۵–۵۷ شبیهسازی طیف ابرپیوستار ساختار شش وجهی حفرههای نابرابر مطابق مقادیر جدول ۵–۵و با اعمال توان بیشینه ۱۰کیلو وات و طول فیبر ۰/۳ متر
شکل ۵–۵۸ شبیهسازی طیف ابرپیوستار ساختار شش وجهی حفرههای نابرابر مطابق مقادیر جدول ۵–۵ و با اعمال توان بیشینه ۵کیلو وات و طول فیبر ۰/۱۵ متر وپهنای پالس ۱۰۰ فمتوثانیه۹۷
شکل ۵–۵۹ شبیهسازی طیف ابرپیوستار ساختار شش وجهی حفرههای نابرابر مطابق مقادیر جدول ۵–۵ و با اعمال توان بیشینه ۵کیلو وات و طول فیبر ۰/۱۵ متر وپهنای پالس ۱۰۰ فمتوثانیه۹۷

پيش گفتار

با انتشار یک پالس کوتاه نوری توان بالا در فیبر نوری، اثرات غیرخطی ایجاد میشوند، که قادر به تولید فرکانس جدید در طیف فرکانسی هستند و اگر طیف فرکانسی به قدری پهن شود که در محدوده دهها ترا هرتزگیرد به آن طیف ابرپیوستار گفته میشود. با کنترل و تغییر قطر حفرههای هوا و فاصله مرکز تا مرکز آنها، که ثابت شبکه نامیده میشود، اثرات غیر خطی و ضرایب پاشیدگی تغییر میکنند. اگر نسبت قطر حفرههای هوا به ثابت شبکه کوچکتر شود، پاشیدگی تخت با مقدار کمینه حاصل خواهد شد. با افزایش اندازه حفرهها، شیب پاشیدگی کاهش یافته ولی ضریب غیر خطی افزایش مییابد. از طرفی با کاهش پاشیدگی، تلفات افزایش مییابد. بنابراین با مصالحه بین پاشیدگی و اثرات غیر خطی و اثرات خیر خطی می می می می می محدوده طیف ابرپیوستار را افزایش داد.

بهبود تولید طیف ابر پیوستار از طرفی به منظور پوشش طیف وسیع و یکنواخت و از طرف دیگر کاهش توان مورد نیاز و کاهش طول فیبر، از موضوعاتی است که پژوهشگران به آن پرداختهاند.

اولین قدم در بهینه سازی این طیف، استفاده از فیبرهای کریستال فوتونی است که سه ویژگی منحصر بفرد محدوده وسیع انتشار تک مود، کنترل پاشیدگی و کنترل مساحت مود موثر، به راحتی با طراحی مناسب ابعاد حفرهها و ثابت شبکه امکان پذیر است. با کاهش مساحت مود موثر، ضریب غیر خطی افزایش یافته و با مدیریت پاشیدگی، طول فیبر از چندین کیلومتر در فیبرهای متداول، به چند سانتی متر کاهش مییابد.

قدم بعدی استفاده از موادی، با ضریب غیر خطی بالاتر از سیلیکا و استفاده از منابع لیزر با توانهای بالاست. دراین پایان نامه هدف بهبود طیف ابرپیوستار با فیبر کریستال فوتونی سیلیکا است که صرفا با طراحی ابعاد حفرهها و ثابت شبکه امکان پذیر است.

در فصل اول این پایان نامه طیف ابر پیوستار معرفی شده و تاریخچهای از آن ارائه شده است. در فصل دوم، ساختار فیبر کریستال فوتونی به همراه ویژگیهای منحصر بفرد آن در کنترل پاشیدگی و اثرات غیر خطی بیان شده و در فصل سوم علت ایجاد اثرات غیر خطی در فیبر نوری بررسی و کاربردهای آنها توضیح داده شده است. در فصل چهارم با تحلیل انتشار امواج از معادله ماکسول، معادله غیرخطی شرودینگر نتیجه میشود. نقش ضرایب مراتب بالای پاشیدگی و اثرات غیر خطی شامل، مدولاسیون خودفازی، پراکندگی رامان و اثر خودتیزی در معادله غیرخطی شرودینگر تحلیل و در نهایت با بررسی تاثیر هر کدام از آن مولفهها، ساختار پیشنهادی نتیجه گیری شده است.

در اولین ساختار شش وجهی فیبر کریستال فوتونی در بستر سیلیکا با قطر حفرههای هوایی ۰/۴۱ میکرومتر و ثابت شبکه ۱ میکرومتر مقادیر پاشیدگی با مقدار بیشینه (ps/nm.km) ۷ و شیب نسبتا تخت در ناحیه پاشیدگی غیرعادی و محدوده وسیع ۱/۱ میکرومتر تا ۱/۷ میکرومتر، در وضعیت منحصر بفرد انتشار تک مود، طراحی و با عبور یک پالس لیزری ۲۸ فمتوثانیهای و توان بیشینه ۱۰ کیلو وات در چنین فیبری به طول ۳۰ سانتیمتر، طیف خروجی ابرپیوستار در محدوده پنجره مخابراتی ۱/۴۲ میکرومتر تا ۱/۶۵ میکرومتر شبیهسازی شده است. در طراحی دوم، با ساختار شش وجهی و حفرههای غیریکسان و ثابت شبکه ۲/۰۸ میکرومتر، پاشیدگی کمتر با مقدار بیشینه (ps/nm.km) در محدوده ۲۱ میکرومتر تا ۱/۶ میکرومتر دارای شیب تخت بوده و با مساحت مودی موثر کوچکتر، ضمن عملکرد تک مود، ضریب غیرخطی ۲۰۱۹ (بر وات.متر) حاصل شد و با عبور یک پالس لیزری ۲۸ فمتوثانیهای و توان بیشینه ۵ کیلو وات در چنین فیبری به طول ۱۵ سانتیمتر، طیف ابرپیوستار در محدوده پنجره مخابراتی ۱/۶ میکرومتر تا ۱/۶۲ میکرومتر شبیهسازی شده است.

فصل اول

معرفي طيف ابر پيوسآر