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ABSTRACT

An Analytical Equation of State Applied to Pure Refrigerants and
Refrigerant Mixtures

A Modified Perturbed Hard-Sphere-Chain Equation of State for
Refrigerant Mixtures

Thermodynamic Properties of Refrigerants Using GMA Equation of
State

By
Zahra Sharafi

Chapter I: In this chapter, the ISM equation of state based on statistical mechanical perturbation
theory, using correlations of Boushehri and Mason has been applied to pure and refrigerant mixtures.
Three temperature-dependent parameters exist in the EOS; the second virial coefficient, By(T), an
effective van der Waals covolume, b(7), and a scaling factor, (7). The second virial coefficients are
calculated from a correlation based on the heat of vaporization, 4H.,,, and the liquid density at the
normal boiling point, py,. a(7) and 5(7) can also be calculated from second virial coefficients by
scaling rules. The theory has considerable predictive power, since it permits the construction of the P-
V-T surface from the heat of vaporization and the liquid density at the normal boiling point. The
equation of state is tested on some pure and refrigerant mixtures to calculate liquid densities, and the
results are compared with experiment.

Chapter II: A new equation of state is proposed to calculate liquid densities of refrigerant mixtures.
Two temperature-dependent parameters; an effective hard sphere diameter and a parameter for the
strength of the attractive forces between two non-bonded segments, and a third parameter representing
the number of chains per molecule appear in the existing perturbed hard-sphere-chain equation of state.
Knowing the critical constants of fluids as input data is sufficient to calculate the temperature-
dependent parameters. Our proposed equation of state is applied to a variety of refrigerant mixtures
over a wide temperature, pressure, and concentration range. A comparison with the experimental data
and ISM EOS for refrigerant mixtures shows that the predicting ability of the present equation of state
is quite good.

Chapter III: In this study, the thermodynamic properties such as density, p, isobaric expansion
coefficient, o, isothermal compressibility, x, and internal pressure, P;, for some refrigerants based on
GMA equation of state have been calculated and a wide comparison with experimental data was made.
The accuracy of the equation of state is determined by a statistical parameter; absolute average
deviation (AAD). The results show that the GMA EOS reproduces the experimental volumetric
properties within experimental errors throughout the liquid phase. Also there are many comparisons of
isobaric expansion coefficient, a, isothermal compressibility, x, and internal pressure, P, with the
corresponding experimental results for the fluids. The generally excellent agreement with experimental
data indicates that this EOS can be used to calculate the thermodynamic properties of liquid
refrigerants with a high degree of certainty.
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CHAPER1

An Analytical Equation of State Applied to
Pure Refrigerants and Refrigerant Mixtures



1.1 Introduction

Halogenated hydrocarbons are the generic base of most refrigerants.
There are different kinds of halocarbon refrigerants such as
chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs), and
hydrofluorocarbons (HFCs). The ozone-depleting and global warming
properties of CFCs and HCFCs encouraged the international community to
replace these materials by HFCs and their mixtures.

Hydroflourocarbons (HFCs) contain no chlorine and are thus given
ozone depletion potentials of essentially zero. So HFCs are most promising
candidates to substitute the CFCs and HCFCs.

Accurate knowledge and prediction of the thermophysical properties of
refrigerants, is of great importance to evaluate the performance of refrigeration
cycles and to determine the optimum composition of new working fluids in
pure and mixture states. The development of models for representation and
prediction of physical properties and phase equilibria as well as the
improvement of current equations of state (EOS) is of particular interest for the
refrigeration industry. Thermodynamic properties of the long-known
refrigerants and the new refrigerants are the key data needed for the calculation
of refrigeration cycles and for designing refrigeration and air-conditioning
equipment.

In addition to experimental measurements, the common procedure to
determine the thermodynamic properties of refrigerants is by means of
equation of state (EOS). Equations of state are powerful tools in chemical

engineering practice since they can be used to correlate and/or predict the




thermodynamic properties and phase behavior of pure fluids and mixtures over
large ranges of temperatures and pressures.

The quest for a simple analytical equation of state for fluids is very old.
The first real success was the van der Waals equation [1], which can be
writhen as

L1 _a (1.1)
PkT 1-bp kT '

where P is the pressure, p =N / V is the number density, k7T is the thermal
energy per one molecule, and a and b are constants for a given fluid. Another

form of equation (1.1) is

__RT a
V,=b V!

(1.2)

and Vo, is molar volume. This was the first equation capable of reasonably
representing both gas and liquid phases. Also it has two features that make it
very convenient for calculations. First, it can be rewritten as a cubic
polynomial with respect to volume and so can be sclved numerically for
volume or density. This property has been retained by contemporary cubic
equations of state. Second, the two van der Waals paramieters a and b can be
determined from critical-point coordinates:

PP 5 aT-T, (1.3)
AR A

The values of parameters “‘a and 5’ as functions of the critical temperature T,

and critical pressure P, then will be:

2 2
2= 27/645]-3-3- (1.4)

b=1/8RT”

(1.5).

c



The parameter a and b remain reasonable, although not accurate, in other
regions of the PVT space. Actually, parameter a is a constant which is a
measure of the strength of the attractive force between a pair of molecules and
bis the excluded volume. Much of our knowledge of the law of force between
molecules comes from the study of gases under conditions where they depart
only slightly from ideal behavior. Under these conditions one may express the
equation of state in the form of a simple power series such as

}@% =1+§B,. (1)p" (1.6).
This is the virial expansion, and the temperature-dependent coefficients B; (7)

are called iy, virial coefficients.

1.1.1 Some Modifications of the van der Waals Equation of
State

Many modifications have been proposed to the van der Waals equation of state
to improve the prediction of volumetric, thermodynamic and the phase
equilibrium properties. Two of them, which can be regarded as precursors of
modern cubic equations of state, are the works of Clausius [2] and Berthelot
[3]. In 1881, Clausius replaced the volume in the van der Waals attraction
term, by (V, + ¢) and creating a three-parameter equation of state:

RT a
P= - 1.7
v,.-b @, +c)’ (1.7

This approach resembles the volume-translation technique, which became
popular almost a century later [4,5]. In 1899, Berthelot introduced an equation

with a temperature-dependent attractive parameter, that is, a (I) =a / T.

RT a
V.- TV (18



This concept several decades later proved to be essential for practical success
of cubic equations of state for phase-equilibrium calculations.

Although virial-type equations like the Benedict-Webb-Rubin EOS [6]
have the statistical-mechanical foundation, which is important from the
theoretical viewpoint, but the need for simple analytical tools for the
calculation of fugacities for process design made a revival of interest in cubic
equations of state. Redlich and Kwong [7] proposed the first cubic EOS that
became widely accepted as a tool for routine engineering calculations of the
fugacity. The equation has the following form:

RT a

p=RT _ 1.9
V. -b TV ,(V, +b) (1.9)
21 2.5
o =042747 8L (1.10)
b=0.0867 2% (1.11)

c

The Redlich-Kwong equation is very successful for the calculation of

-the properties of gas mixtures. However, it was not adequate for modeling of

both gas and liquid phases. The simple temperature-dependence of the
attractive parameter was insufficient for the representation of vapor pressures
and liquid volumes were not predicted with acceptable accuracy. Therefore,
further research in this area focused on two branches:

1) Improving the temperature dependence of the attractive parameter to control
the vapor pressure predictions.

2) Improving the functional form of P(V) to optimize the prediction of
volumetric properties.

For the case (1) we can example Soave modification to the Redlich-Kwong
EOS which frequently referred to as SRK EOS [8], which assumed a = q, .0
(7}) and « has the form:




a=[1+m(1-T."*)] (1.12)
where a, is the value of “‘a’’ parameter at critical point, 7, = (T / T,) and m is
a function of acentric factor, @ , as:

m=0.48+1.574 0 - 0.175 &° (1.13).
For the second case, we can mention the Peng-Robinson EOS [9] that is:

P RT a(T)
V,.-b V.(V,+b)+bV, —b)

(1.14).

The trends in research on cubic EOS’s after the contributions of Soave and
Peng-Robinson have followed three main groups:

a) Modifications to a (7,) in the SRK and PR equations of state to obtain more
accurate predictions of vapor pressure and vapor-liquid equilibrium.

b) Modifications to the volume-dependence of the attractive pressure term,
which has given rise to the volume-translation concept.

¢) Use of a third (or more) substance-dependent parameter(s) which constitutes

the so-called group of three (or more)-parameter equations of state.

1.2 Literature Review

The equation of state plays a central role in the treatment of the
thermodynamic properties of fluids, particularly of mixtures. For this purpose,
an analytical equation having a statistical-mechanical basis in molecular theory
is very desirable. The most fundamental tool in providing a basis to predict the
thermophysical properties of matter is the equation of state. Equations of state
attempt to describe the relationship between temperature, pressure and volume
for fluids or mixtures of substances. Once the EOS of a system is established,
all thermodynamic behavior of the system can be calculated by means of
statistical mechanical tools. Unfortunately, among the available equations of

state, only a few are on a sound analytical basis and are proper for this purpose.




Regarding the vast applicability of different refrigerants, a precise knowledge
of the pressure-density relation of these refrigerants over an extended range of
temperature and pressure is extremely useful in predicting thermophysical
properties. Theories of liquids have been developed over the past years based
on the recognition that the structure of a liquid is determined primarily by
repulsive forces, so that fluids of hard bodies can serve as a useful reference
state for perturbation theories.

An analytical EOS, which has a sound basis in statistical-mechanical
perturbation theory, was proposed by Song and Mason [10] for pure fluids.
This equation of state produces very accurate results for fluids up to the critical
temperature. One of the most powerful features of this equation of state is the
presence of only one adjustable parameter related to the structure of the
substance. The only initial information needed for this equation of state is the
intermolecular potential function of the systems. But there are no exact
intermolecular potential energies (except for some simple compounds) for real
fluids. Thm, Song and Mason [11] presented a new strong principle of
corresponding states method that reduces the entire pressure-volume-
temperature (PV7) surface of a pure nonpolar fluid to a single curve. This
reduction of a surface to a curve is based on statistical-mechanical theory,
which also furnishes the algorithms for calculating, from the intermolecular
pair potential, the three temperature-dependent parameters are needed for the
reduction. If the pair potential is not known, data on the second virial
coefficient as a function of temperature can be used instead. The ISM equation
of state is not accurate enough in the critical and two-phase regions, butl
otherwise describes the volumetric behavior of real fluids well over the entire
range from the dilute gas to the dense liquid. It has considerable predictive
power, since it permits the construction of the entire P¥T surface from just the

second virial coefficient plus a few liquid densities.




