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Abstract:
This paper deals with the preparation and characterization of some polymeric

membranes to study the efficiency of gas separation performance. Membrane performance
was evaluated using pure gases (Ny and CyH:) at different feed pressures. This work
contains two parts. The aim of the first part was to improve gas separation performance of
(pyromellitic dianhydride-co-¢, ¢'-oxy dianiline (PMDA/ODA)) polyimide membranes by
means of different additive agent such as Polyvinylidene fluoride (PVDF) and
polyethersulfone (PES). The idea selectivity of Y« :7 (ethylene permeation only) was
achieved at ' bar feed pressure using PMDA/ODA polyimide membranes with addition of
Y wt % PVDF. Addition of PES did not have any important influence on ideal selectivity
of the prepared membranes. By adding PES, there was an evidence of approximately
spherical droplets which have been dispersed throughout the polyimide membrane matrix.
Part two of the paper was to prepare blend membranes of PES-based. PES- (PMDA/ODA)
polyamic acid (PAA) blend membranes were prepared by using blends of different
compositions of PES (Y° wt %) and PAA () °© wt %) solutionsin NMP. The composition of
casting solutions of PES-PAA solutions has a main influence on the ideal selectivity of
blended membrane. The ideal selectivity of Y, for ethylene was achieved at ¥ bars feed
pressure using blend membranes with +,° wt % PAA solution in their casting solutions.
PES- PMDA/ODA polyimide membranes were also prepared from blend casting solutions
by thermal imidation. Immiscible blend membranes were achieved at different
compositions of the casting solutions. The blend membranes have huge amount of gas
permeance with poor selectivity. IR spectroscopy and Scanning Electron Microscopy

(SEM) images were employed to characterize the membranes.
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V-V Introduction
In recent years, membranes and membrane separation techniques have grown from a

simple laboratory tool to an industrial process with considerable technical and commercial
impact. Today, membranes are used on a large scale to produce potable water from the sea
by reverse osmosis, to clean industrial effluents and recover valuable constituents by
electrodialysis, to fractionate macromolecular solutions in the food and drug industry by
ultra filtration, to remove urea and other toxins from the blood stream by dialysis in an
artificial kidney, and to release drugs such as scopolamin, nitroglycerin, etc. a a
predetermined rate in medical treatment. Although membrane processes may be very
different in their mode of operation, in the structures used as separating barriers, and in the
driving forces used for the transport of the different chemical components, they have
several features in common which make them attractive as a separation tool. In many
cases, membrane processes are faster, more efficient and more economical than
conventional separation technigques. With membranes, the separation is usually performed
at ambient temperature, thus allowing temperature-sensitive solutions to be treated without
the constituents being damaged or chemically altered.

This is important in the food and drug industry and in biotechnology where
temperature-sensitive products have to be processed. Membranes can a so be “tailor-made”
so that their properties can be adjusted to a specific separation task.

Membrane science and technology is interdisciplinary, involving polymer chemists
to develop new membrane structures; physical chemists and mathematicians to describe
the transport properties of different membranes using mathematical models to predict their
separation characteristics, and chemical engineers to design separation processes for large
scale industrial utilization. The most important element in a membrane process, however,
is the membrane itself. To gain an understanding of the significance of the various
structures used in different separation processes a brief discussion of the basic properties

and functions of membranes, and the driving forces and fluxesinvolved is essential [].



V-Y Definition of a membrane
A precise and complete definition of a membrane which covers all its aspects is

rather difficult, even when the discussion is limited to synthetic structures asin this outline.
In the most general sense, a synthetic membrane is a barrier which separates two phases
and restricts the transport of various chemical species in a rather specific manner. A
membrane can be homogeneous or heterogeneous, symmetric or asymmetric in structure; it
may be solid or liquid; it may be neutral, may carry positive or negative charges, or may be
bipolar. Its thickness may vary between less than )+ + nm to more than a centimeter. The
electrical resistance may vary from severa mega ohms to a fraction of an ohm, mass
transport through a membrane may be caused by convection or by diffusion of individual
molecules, induced by an electric field, or a concentration, pressure or temperature
gradient.

The term “membrane”, therefore, includes a great variety of materials and structures,
and a membrane can often be better described in terms of what it does rather than what it
is. Some materials, though not meant to be membranes, show typical membrane properties,
and in fact are membranes, e.g., protective coatings, or packaging materials. All materials
functioning as membranes have one characteristic property in common: they restrict the
passage of various chemical speciesin avery specific manner [V].

In essence a membrane is nothing more than a discrete, thin interface that moderates
the permeation of chemical species in contact with it. This interface may be molecularly
homogeneous, that is, completely uniform in composition and structure, or it may be
chemically or physically heterogeneous, for example, containing holes or pores of finite
dimensions or consisting of some form of layered structure. A normal filter meets this
definition of a membrane, but, by convention, the term filter is usually limited to structures
that separate particulate suspensions larger than Y to Y+ um. The principa types of

membrane are shown schematically in Figure Y- For relative information see [Y].
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Chapter Two

Gas separ ation with membranes



Y-\ Introduction

The separation of gas mixtures with membranes has emerged from being alaboratory
curiosity to becoming a rapidly growing, commercially viable alternative to traditional
methods of gas separation within the last two decades. Membrane gas separation has
become one of the most significant new unit operations to emerge in the chemical industry
inthelast Ye years[¥]. Asaresult, gas separation by membrane process has acquired great
significance in the industrial application in terms of economical considerations, as gases
occupy acentral position in the chemical feed stock industry

Organic polymers are the dominating materials for gas separation membranes. Many
polymers exhibit sufficient gas selectivity and they can be easily processed into
membranes. Palladium alloys are the only inorganic materials which are currently used for
gas separation (ultra-pure hydrogen generation) on a commercial scale. However, during
the last decade inorganic materials have been developed with exciting unmatched
selectivity for certain gas mixtures and some of the inorganic membranes described in the
scientific literature seem to be on the brink of commercialization. Table Y-) shows relevant

membrane materials for gas separation [¥].

Tab Y- Materialsfor gas separating membranes

Organic polymers Inorganic materials
Polysulfone, polyether sulfone Carbon molecular sieves
Cellulose acetate Nanopor ous carbon
Polyimide, polyetherimide Zeolites
Polycar bonate (brominated) Ultramicroporous amor phous silicia
Polyphenyleneoxide Palladium alloys
Polymethylpentene Mixed conducting perovskites

Polydimethylsiloxane -

Polyvinyltrimethylsilane -



Y-Y Types of membranes

Membranes for the separation of gas mixtures are of two very different kinds: one a

microporous membrane, the other nonporous.

Y-Y-\ Microporous membranes

Microporous membranes were the first to be studied and the basic law governing
their selectivity was discovered by Graham. When pore size of a microporous membraneis
small compared to the mean-free-path of the gas molecules, permeate will be enriched in
the gas of the lower molecular weight. Since molecular weight ratios of most gases are not
very large and since the selectivity is proportional to the square root of this ratio, not only
practical but theoretical enrichments achievable by this method necessarily will be small.
In order to have an efficient separation of a gas mixture, many separation stages are
required. On the other hand, since this method of separation is based strictly on mass ratios
and not chemical differences, it is the only membrane based method capable of separating

isotopes of a given compound [¥].

¥-Y-¥ Nonpor ous membranes

The other membrane-based gas separation method utilizes non-porous membranes.
In permeating through the membrane, the gases are separated due to differences in their
diffusivity and solubility in the membrane matrix (normaly an organic polymer).
Molecular size will play arole in such separations but so will the chemical nature of the
gas. Thus, conceptually very efficient separations should be possible this way. As polymer
science developed, many polymers were tested for gas permeabilities and indeed some
with very good selectivities were found [Y].

Y-¥ Theor etical background

The average pore diameter in a membrane is difficult to measure directly and must
often be inferred from the size of the molecules that permeate the membrane or by some
other indirect technique. With this caveat in mind membranes can be organized into the

some general groups shown in Figure Y-).



Microfiltration
1000~ Microporous
Knudsen
@ I flow
= membranes
b
= —
£
8
o
2 1001~ Ultrafiltration
g
g Pore-flow
'g microporous
> membranes
I o Finely microporous ~ Intermedate pore-flow
Nanofiltration ceramic/carbon solution-diffusion
____________________ membranes _________ membranes
Homogeneous
Reverse Gas separation dense membranes
osmosis Pervaporation | [ with polymer films solution-diffusion
1
Liquid permeation Gas permeation

Figure Y-\ Schematic representation of the nominal pore size and best theoretical model for the

principal membrane separation processes|[ Y]

Both porous and dense membranes can be used as selective gas separation barriers;
Figure Y-\ illustrates the mechanism of gas permeation. Three types of porous membranes,
differing in pore size, are shown. If the pores are relatively large from +,) to Y+ um, gases
permeate the membrane by convective flow, and no separation occurs. If the pores are
smaller than +,) um, then the pore diameter is the same size as or smaller than the mean
free path of the gas molecules. Diffusion through such pores is governed by Knudsen
diffusion, and the transport rate of any gasisinversely proportional to the square root of its
molecular weight. This relationship is called Graham’s law of diffusion. Finaly, if the
membrane pores are extremely small, of the order ¢ — Y+A°, then gases are separated by
molecular sieving. Transport through this type of membrane is complex and includes both
diffusion in the gas phase and diffusion of adsorbed species on the surface of the pores
(surface diffusion). These very small-pore membranes have not been used on a large scale,
but ceramic and ultramicroporous glass membranes with extraordinarily high selectivities

for similar molecules have been prepared in the laboratory.



