In the name of god

Faculty of Chemistry Department of Analytical Chemistry

M.Sc.Thesis

Determination of olanzapine and thiourea using electrodes modified by DNA and film of copper-cobalt hexacyanoferrate

&

Investigation of electro-oxidation of some catechol derivatives in the presence of 4-phenylsemicarbazid

Supervisor:

Dr. Mohammad Bagher Gholivand

By:

Salman darabi

October 2011

کلیه حقوق مادی مترتب بر نتایج مطالعات، ابتکارات و

نوآوری های ناشی از تحقیق موضوع این پایان نامه

متعلق به دانشگاه رازی است.

Dedicated to:

My Family

Acknowledgments

First, I thank my God for his benefice and mercy all throughout my life.

I would like to thank my supervisor, Prof. Mohammad Bagher Gholivand, for the support, guidance and time he devoted to my studies.

I would also like to thank all my friends and colleagues that were there to give a helping hand when necessary.

Most of all, I express my deep appreciations to my parents for tireless encouragement, support, inspiration, friendship, and love.

Abstract

Part one: Investigations about the electrooxidation of catechol and its derivatives show that the obtained *O*-quinones from the oxidation of different catechols are unstable compounds and can be attacked as a Michael acceptor by different nucleophiles. In this work the Electrochemical oxidation of catechols (1a-c) have been studied in the presence of 4-phenylsemicarbazide as a nucleophile in water/acetonitrile (90/10) solution, by means of cyclic voltammetry and controlled-potential coulometry. The results indicate that the formation oxadiazine compounds (6a-c) based on Michael addition reactions between quinones derived from the catechols with 4-phenylsemicarbazide under ECEC mechanism. The electrochemical synthesis of these compounds has been successfully performed in a two-compartment cell. The products have been characterized after purification by IR, ¹H NMR, ¹³C NMR and MS.

Part two: Olanzapine is a drug used commonly as an Antipsychotic agent against schizophrenia disease in world. DNA was utilized as a pre-concentration element for the determination of olanzapine based on its interaction with DNA. Initially, the interaction between olanzapine and DNA in 0.04 M pH 4 Britton–Robinson buffer solution was studied by cyclic voltammetry and Differential pulse voltammetry. Decreasing peaks was observed for olanzapine with increasing concentration DNA. The results indicated that olanzapine can bound to DNA. The binding constants K of binding with DNA were obtained by cyclic voltammetry and differential pulse voltammetry method. From the voltammetric data changes in limiting current with addition of DNA, the binding constant (K) of the olanzapine interaction with DNA was found to be 3.3×10^4 dm³ mol⁻¹. Finally, sensor designed for the determination of olanzapine Short reaction times (2 min) was sufficient for determining range from 5×10^{-6} to 1×10^{-3} mmol L⁻¹, with a linear correlation of r =0.9977 and a detection limit of 2.47×10^{-6} mmol L⁻¹.

Part three: Copper-cobalt hexacyanoferrate (CuCoHCF) film are grown on a carbon paste electrode by electrodepositing method. The electrochemical behavior and electrocatalytic activity of modified electrode towards oxidation of thiourea were studied. The oxidation of thiourea occurred at the peak potential of 0.8 V vs. Ag/AgCl. The modified electrode was employed successfully for thiourea detection using linear sweep voltammetry. The modified electrode exhibited good catalytic activity for the oxidation of thiourea at a reduced overpotential with good sensitivity in the wide concentration range 3-120 µM thiourea and detection limits of 2.6 µM. A Tafel plot slope derived from voltammograms, indicated a one-electron charge transfer process to be the rate-limiting step and the overall number of electrons involved in the catalytic oxidation of thiourea was found to be 2. The CuCoHCF modified-electrode exhibited stable electrochemical responses in a wide pH range 3–9 and showed excellent electrocatalytic activity toward the oxidation of thiourea in 0.1M sodium phosphate buffer, pH 7. The diffusion coefficient of thiourea and rate constant for the catalytic reaction were also evaluated. The obtained attractive analytical performance together with high selectivity and simplicity of the proposed method provide an effective to develop a thiourea sensor.

Table of contents

Page

Part One	1
Electro-oxidation of catechols in the presence of 4-phenylsemicarbazide	1
Chapter One	2
	2
1 1 2 Organic electrosynthesis	3
1 1 3 Trends in electroorganic syntheses	4
1 1 4 Application of electrosynthesis in industry	6
1.1.5. The types of cell.	
1.1.6. The types of electrolysis	
1.1.6.1. Indirect electrolysis	
1.1.6.2. Direct electrolysis	
1.2.7. Techniques for electrosynthesis	
1.1.8. Common electrochemical conversions	
1.1.8.1. Anodic oxidative coupling	
1.1.9. The recognition of mechanism	
1.1.10. The Types of Mechanism in Electrochemistry	
1.1.10.1. CE mechanism	
1.1.10.2. EC mechanism	
1.1.10.3. EC' mechanism	
1.1.10.4. ECE mechanism	
1.1.10.5. ECEC mechanism	
1.1.11. Catechol	
1.1.12. 4-phenyl semicarbazid	
1.1.13. Oxadiazine	
Chapter Two	20
1.2.3. Electroorganic synthesis of 6a-c	
Chapter Three	
Recult & Discussion	-
ווכסעונס מעוסנעססוטוו	

Results & Discussion
1.3.1. Optimization of pH in the presence and absence of nucleophile
1.3.1.1. Electrochemical behavior of catechol
1.3.1.2. Electrochemical behavior of 4-phenylsemicarbazid
1.3.1.3. Electrochemical behavior of catechol in the presence of nucleophile
1.3.2. Investigation of electrochemical behavior and mechanism of electro-oxidation of catechols in the
absence and presence of 4-phenylsemicarbazid
1.3.2.1. Electrochemical behavior of Catechol in the Presence of 4-phenylsemicarbazid26
1.3.2.2. Electrochemical behavior of 3-methylcatechol in the Presence of 4-phenylsemicarbazid 32
1.3.2.3. Electrochemical behavior of 3-methoxycatechol in the presence of 4-phenylsemicarbazid 36
1.4. Conclusion
1.5. Physical & Experimental data

An electrochemical investigation into the interaction between DNA and olanzapine and its sensory	
application	. 44

Chapter One	45
- Introduction	
2.1.1. Definition of Biosensors	
2.1.2. Type bioreceptor	
2.1.2.2 DNA structure	
2.1.2.1. DNA bioreceptor	
2.1.2.3 DNA forms	
2.1.3. Fundamental Interaction with nucleic acids	50
2.1.3.1 Covalent Interaction	50
2.1.3.2 NonCovalent Binding modes	
Fig. 2.1.5 Groove binding of Hoescht 33258 to the minor groove of DNA (left) and the interca	lation of
ellipticine into DNA (right)	
2.1.4 Analytical methods for investigating drug/DNA Interactions	
2.1.4.1 Electrochemical approach	
2.1.5 Classification of transducers	53
2.1.5.1 Electrochemical Biosensors	53
2.1.6 Materials Used for Electrode Modification	
2.1.7 Immobilization Techniques Used To Develop DNA Biosensors	
2.1.7.1 Adsorption	55
2.1.7.2 Covalent Immobilization	
2.1.7.2.1 Chemisorption	56
2.1.7.2.2. Covalent Attachment of a Modified Probe on Functionalized Surfaces	57
2.1.7.3 Avidin (or Streptavidin)–Biotin Interactions	

Chapter Two	61
Experimental	61
2.2.1. Instrumentation	62
2.2.2.Chemicals and materials	62
2.2.3. Preparation of UV-irradiated DNA film modified electrode (UV-DNA-FE)	63
2.2.4. Analysis of olanzapine tablets	63
2.2.5. Analysis of spiked human serum	64
Chapter Three	65

Chapter Three	65
Results and Discussion	
2.3.1. Voltammetric studies	
2.3.2. Characteristics of modified electrode	
2.3.3 The pH Effect	73
2.3.4. The effect of accumulation time	74
2.3.5. Analytical performance characteristics	75
2.3.6 Analytical applications	

Part three	
Sensors for detection of thiourea based on carbon paste electrode modified with hybrid	
hexacyanoferrates of copper and cobalt film	

Chapter One	79
Introduction	
3.1.1 Carbon Paste Electrodes	80
3.1.2 Modified electrode type	80
3.1.3 polynuclear inorganic modified electrodes	81
3.1.5 Deposition and Electroactivity of the Other Metal Hexacyano-ferrates	
3.1.6 Analytical Applications	83
3.1.6.1 Sensors for Nonelectroactive Cations	
3.1.6.2 Sensors for Easily Oxidizable Compounds and Other Non-traditional Sensors	
3.1.7 Thiourea	

Chapter two	
Experimental	
3.2.1. Chemicals Reagent grade	
3.2-2-Instrumentation	
3.2.3. Electrode Preparation	
3.2.4. Analytical procedure	

Chapter three	90
Results and discussion	90
3.3.2. Effect of Solution pH	95
3.3.3. Electrocatalytic oxidation of thiourea on CuCoHCF	96
3.3.4 Optimization of experimental variables	99
3.3.4.1 The pH effect	99
3.3.5. Mechanistic studies of electrocatalytic oxidation of thiourea at the surface of a modified	
electrode	100
3.3.6. Chronoamperometric studies	102
3.3.7 Analytical Application Calibration and Detection Limit	105
3.3.8 Effects of chemical interferences	107
3.3.9 Analytical application	107
3.4 Conclusions	109

Part FourI

Appendix	1
Reference	

SCHEME.1.1.1 COMMON SPECIES FORMED ELECTROCHEMICALLY
SCHEME.1.1.2 DIAGRAM ENERGY OF SEVERAL TYPES OF METHODS IN ORGANIC CHEMISTRY
FIG.1.1.1 SCHEMATIC OF UNDIVIDED CELL (A) DIVIDED CELL (B)
SCHEME. 1.1.3. THE TOTAL REACTIONS IN ELECTROLYSIS CELL, IN THE PRESENCE OF FERROCYANIDE
SCHEME. 1.1.4. INDIRECT ELECTROCHEMICAL HYDROPHOSPHONYLATION OF ALKENES WITH DIALKYL
PHOSPHITES
SCHEME. 1.1.4. ANODIC OXIDATIVE COUPLING
SCHEME.1.1.5. ANODIC OXIDATION AND NUCLEOPHILE ADDITION OF BENZENDIOLS
SCHEME.1.1.6. ELECTROCHEMICAL OXIDATION OF 1,2- AND 1,4-DIHYDROXYBENZENS IN THE PRESENCE OF
1-PHENYL-5-MERCAPTOTETRAZOLE13
SCHEME.1.1.7. ELECTROCHEMICAL OXIDATION OF DIOL DERIVATIVES OF BENZOIC ACID IN THE PRESENCE
OF ACETYLACETONE14
FIG.1.3.1. THE EFFECT OF PH ON THE REDOX POTENTIAL OF CATECHOL. MEASUREMENT CONDITIONS: 0.2M
PHOSPHATE BUFFER CONTAINING 0.2MM CATECHOL AT SCAN RATE = 100MVS ⁻¹ 24
FIG.1.3.2. THE EFFECT OF PH ON THE OXIDATION POTENTIAL OF 4-PHENYLSEMICARBAZID .
MEASUREMENT CONDITIONS: 0.2M PHOSPHATE BUFFER CONTAINING 0.2 MM 4-
PHENYLSEMICARBAZID AT SCAN RATE = 100MVS ⁻¹ 25
FIG.1.3.3. A) CYCLIC VOLTAMMOGRAMS OF 0.2 MM CATECHOL IN THE PRESENCE OF 0.2 MM 4-
PHENYLSEMICARBAZID AT A GLASSY CARBON ELECTRODE IN SOLUTION CONTAINING 0.2 M
PHOSPHATE BUFFER (PH= 2-9. B) (A) VARIATION OF PEAK CURRENT RATIO (I_{C1P}/I_{A1P}) OF CATECHOL IN
THE ABSENCE OF NUCLEOPHILE, (B) VARIATION OF I_{C1P}/I_{A1P} IN THE PRESENCE OF 4-
PHENYLSEMICARBAZID AND Δ (A-B) DIFFERENCES BETWEEN THE PEAK CURRENT RATIO IN THE
PRESENCE AND ABSENCE OF 4-PHENYLSEMICARBAZID
FIG.1.3.4. CYCLIC VOLTAMMOGRAMS OF (A) 0.2 MM CATECHOL IN THE ABSENCE OF NUCLEOPHILE; (B) 0.2
MM 4-PHENYLSEMICARBAZID ALONE AND (C) CATECHOL IN THE PRESENCE OF 0.2 MM 4-
PHENYLSEMICARBAZID; AT A GLASSY CARBON ELECTRODE IN WATER/ACETONITRILE (90/10)
SOLUTION. SUPPORTING ELECTROLYTE SODIUM PHOSPHATE 0.2M, SCAN RATE 100 MV S $^{-1}$; T=25+1 °C.
FIG. 1.3.5. A) TYPICAL CYCLIC VOLTAMMOGRAMS OF 0.2 MM CATECHOL IN THE PRESENCE OF 0.2 MM 4-
PHENYLSEMICARBAZIDE AT A GLASSY CARBON ELECTRODE IN WATER/ACETONTRILE (90/10)
SOLUTION CONTAINING 0.2 M SODIUM PHOSPHATE. SCAN RATES FOR 50, 100, 150, 200, 400, 600,
800, 1500, 2000 MV S , RESPECTIVELY. B) VARIATION OF PEAK CURRENT RATIO (I _{PA1} /I _{PC1}) AND
$(I_{PA1}/\nu_1/2)$ VERSUS SCAN RATE, $I = 25 \pm 1$ °C
FIGURE .1.3.6. CYCLIC VOLTAMOGERAMIS OF 0.2 MIMOL CATECHOL IN THE PRESENCE OF 0.2 MIMOL 4-
PHENYLSEMICARBAZIDE AT A GLASSY CARBON ELECTRODE DURING CONTROLLED-POTENTIAL
COULOMETRY AT 0.2V VS.SCE (A) AT THE BEGINNING OF AND (B-D) IN THE COURSE OF, AND (E) AT
THE END OF COULOMETRY. SCAN RATE 100MVS-1; 1=25±1°C
SCHEME, I.3.1. TOTAL MECHANISM REACTION CATECHOL WITH 4-PHENYLSEMICARBAZID
FIG. 1.3.7. CYCLIC VOLTAMIMOGRAMIS OF (A) U.2 MIM 3-METHYLCATECHOL IN THE ABSENCE OF
NUCLEOPHILE; (B) 0.2 MM 4-PHEN Y LSEMICARBAZID IN THE ABSENCE OF CATECHOL AND (C)
CATECHOL IN THE PRESENCE OF 0.2 MIM 4-PHENYLSEMICARBAZID; AT A GLASSY CARBON
ELECTRODE IN WATER/ACTIONITRILE (90/10) SOLUTION. SUPPORTING ELECTROLYTE SODIUM PUOSPULATE (0.2NA), SCAN PATE 100 NAV S-1, T-25 + 1 °C = 22
PROSPRATE (0.2M); SCAN RATE 100 MV S ; $T=25+1$ C
FIG. 13.8. A) I YPICAL CYCLIC VOLTAMINIOGRAMIS OF U.2 MIMI 3- MIETHYLCATECHOL IN THE PRESENCE OF U.2
IVIIVI 4-FITEIVIL SEIVII CANDAZIDE AT A GLASST CARBON ELECTRODE IN WATER/ACETONTRILE (90/10)
OUU, 1000, 1000 IVIV S-1, RESPECTIVELY B) VARIATION OF PEAK CUKKENT KATIO (I_{PA1}/I_{PC1}) AND (1 - ($1/2$) VERSUS SCAN DATE AND T = 25 ± 1 °C
$(I_{PA1}/\nu_1/2) VERSUS SCAIN KATE AND, I = 25 ± 1 C$
WINDE + TENTESEWICANDALIDE AT A GLASST CARDON ELECTRODE DURING CONTROLLED-

POTENTIAL COULOMETRY AT 0.20V VS. SCE. (A) AT THE BEGINNING OF, (B-F) IN THE COURSE OF, AND
(G) AT THE END OF COULOMETRY. SCAN RATE 100MVS-1; 1=25±1
FIG. 1.3.10 CYCLIC VOLTAWIWOGRAWIS OF (A) 0.2 WW 3-WETHOXYCATECHOL IN THE ABSENCE
NUCLEOPHILE; (B) 0.2 MM 4-PHENYL SEMICARBAZID ALONE, (C) 0.2 MM 3-METHOXYCATECHOL
IN THE PRESENCE OF 0.2 MM 4-PHENYLSEMICARBAZID; AT A GLASSY CARBON ELECTRODE IN
WATER/ACETONITRILE (90/10) SOLUTION. SUPPORTING ELECTROLYTE SODIUM PHOSPHATE (0.2M);
SCAN RATE 100 MV S-1; 7=25+1 °C
FIG.1.3.11. A)TYPICAL CYCLIC VOLTAMMOGRAMS OF 0.2 MM 3- METHOXYCATECHOL (1C) IN THE PRESENCE
OF 0.2 MM 4-PHENYLSEMICARBAZIDE AT A GLASSY CARBON ELECTRODE IN WATER/ACETONITRILE
(90/10) SOLUTION CONTAINING 0.2 M SODIUM PHOSPHATE. SCAN RATES FOR 50, 100, 150, 200, 400,
600, 800, 1000, 1500 MVS ⁻¹ , RESPECTIVELY B) VARIATION OF PEAK CURRENT RATIO (I _{PA1} /I _{PC1}) AND
$(I_{PA1}/\nu 1/2)$ VERSUS SCAN RATE, T = 25 ± 1 °C
FIG.1.3.12. CYCLIC VOLTAMOGERAMS OF 0.2 MMOL 3- METHOXYCATECHOL IN THE PRESENCE OF 0.2
MMOL 4-PHENYLSEMICARBAZIDE AT A GLASSY CARBON ELECTRODE DURING CONTROLLED-
POTENTIAL COULOMETRY AT 0.20V VS SCE. (A) AT THE BEGINNING OF, (B) AND (C-D) IN THE COURSE
OF, AND (F) AT THE END OF COULOMETRY. SCAN RATE100MVS-1; T=25±1°C
SCHEME. 1.3.2. TOTAL MECHANISM REACTION CATECHOLS WITH 4-PHENYLSEMICARBAZID
FIGURE 2.1.1. SCHEMATIC ARCHITECTURE OF A BIOSENSOR
FIG. 2.2.2. THE NORMAL RIGHT-HANDED "DOUBLE HELIX" STRUCTURE OF DNA
SCHEME. 2.1.3. STRUCTURES OF THE MAJOR PYRIMIDINE AND PURINE BASES OF DNA
SCHEME. 2.1.4. STRUCTURES TYPE FORMS DNA
FIG. 2.1.5 GROOVE BINDING OF HOESCHT 33258 TO THE MINOR GROOVE OF DNA (LEFT) AND THE
INTERCALATION OF ELLIPTICINE INTO DNA (RIGHT)51
FIGURE. 2.1.6. BASIC ELEMENTS OF AN DNA BIOSENSOR
THE SENSING LAYER WAS PREPARED ACCORDING TO DIFFERENT METHODS, AMONG WHICH ADSORPTION
BY ELECTROSTATIC INTERACTIONS. DNA PROBES WERE ADSORBED ON THE OUTER LAYER OF
POLY(ALLYLAMINE)- HYDROCHLORIDE (PAAH)/SODIUM POLY(STYRENESULFONATE) (PSS)/ PAAH 55
FIGURE. 2.1.7. THE IMMOBILIZATION SCHEMATIC DIAGRAM OF SSDNA ON CHITOSAN-MODIFIED
PLATINUM ELECTRODE
SCHEME. 2.1.8. ILLUSTRATIVE PRESENTATION OF THE COVALENT IMMOBILIZATION OF DSDNA ON SAMS
WITH DIFFERENT TERMINAL GROUPS56
FIG. 2.1.9. SCHEMATIC REPRESENTATION OF DNA IMMOBILIZATION USING EDC COUPLING
FIG. 2.1.10. SYNOPTIC OF THE ODN SENSOR DESIGN AND ODN SENSING
SCHEME. 2.2.1. STRUCTURE OLANZAPINE
FIG.2.3.1. CYCLIC VOLTAMMOGRAMS OF MIXTURES CONTAINING OLANZAPINE (10 ⁻⁴ MOL
DM ⁻³) (1); IN THE PRESENCE OF [DNA]: 5×10^{-6} MOL DM ⁻³ (2); 1×10^{-5} MOL DM ⁻³ (3); 1.5×10^{-5}
MOL DM ⁻³ (4); 2×10^{-5} MOL DM ⁻³ (5), 2.5×10^{-5} MOL DM ⁻³ (6), 3×10^{-5} MOL DM ⁻³ (7):
MEASUREMENT CONDITIONS: $PH= 4$, $SCAN RATE = 100 MVS^{-1}$
FIG.2.3.2. DIFFERENTIAL PULSE VOLTAMMOGRAMS OF MIXTURES CONTAINING OLANZAPINE (10 $^{-4}$ MOL
DM ⁻³) (1); IN THE PRESENCE OF [DNA]: 2.5×10^{-6} MOL DM ⁻³ (2); 5×10^{-6} MOL DM ⁻³ (3); 7.5×10^{-6} MOL
DM^{-3} (4); 1× 10 ⁻⁵ MOL DM^{-3} (5)2.5× 10 ⁻⁵ MOL DM^{-3} (6), 3× 10 ⁻⁵ MOL DM^{-3} (7). INSET: RELATIONSHIP
BETWEEN THE DPV PEAK CURRENTS AND THE CONCENTRATION OF DNA AT 10^{-4} MOL DM $^{-3}$ OF
OLANZAPINE: MEASUREMENT CONDITIONS: PH= 4, SCAN RATE = 20MVS ⁻¹
FIG. 2.3.3. PLOT OF LOG(1/[DNA]) AGAINST LOG(IG/(IG –IH-G)) USING CV RESULTS FOR OLANZAPINE WITH
DNA
FIG. 2.3.4. PLOT OF LOG(1/[DNA]) AGAINST LOG(IG/(IG –IH-G)) USING DPV RESULTS FOR OLANZAPINE
WITH DNA

FIG. 2.2.5. THE CYCLIC VOLTAMMOGRAM(CV) OBTAINED FOR THE OXIDATION OF 1 MM, OLANZAPINE AT
(UV-DNA-FE) (A) AND BARE GC ELECTRODE (B) IN PH 4.0, BRITTON-ROBINSON SOLUTION AT A SCAN
RATE OF 100 MV S ⁻¹
FIG 2.3.6 CYCLIC VOLTAMMORAMS OF (LIV-DNA-FE) FLECTRODE IN 0.04M BRITTON-ROBINSON BLIFFER (PH
4.0) CONTAINING 1MM OF ANZADINE AT SCAN BATE 10, 20, 50, 75, 100, 150, 200 AND 250 M/s^{-1} 72
4.0) CONTAINING TIVIN OLANZAFINE AT SCAN KATE 10, 20, 50,50, 75, 100,150, 200 AND 250 MVS .72
FIG.2.3.7. THE EFFECT OF PH ON THE PEAK CORRENT AND OLANZAPINE OXIDATION POTENTIAL.
MEASUREMENT CONDITIONS: 0.04M BRITTON-ROBINSON BUFFER (PH 4.0) CONTAINING 0.3MM
OLANZAPINE AT SCAN RATE = 20MVS-174
FIG. 2.3.8. THE EFFECT OF TIME ACCUMULATION ON THE PEAK OXIDATION CURRENT OLANZAPINE
MEASUREMENT CONDITIONS: 0.04M BRITTON-ROBINSON BUFFER (PH 4.0) CONTAINING 0.5 μ M
OLANZAPINE AT SCAN RATE = 20MVS-174
FIG.2.3.9. CALIBRATION CURVE OLANZAPINE AT (UV-DNA-FE) IN PH 4.0, BRITTON-ROBINSON (PH 4.0).
MEASUREMENT CONDITIONS: 0.04M BRITTON-ROBINSON BUFFER (PH 4.0) SCAN RATE = 20MVS-1.76
FIG 3 3 1 CYCLIC VOLTAMMOGRAMS IN THE FLECTRODEPOSITION PROCESS OF HYBRID COPPER-COBALT
$1.25\times10^{-4} \text{ MCO}(NO) = 6\times10^{-4} \text{ MK} \text{ FE}(6N) = 0.00 \text{ MK} \text{ FE}(6N) = 0.00 \text{ MK} \text{ FE}(6N) = 0.00 \text{ MK} \text{ MK} \text{ MK} \text{ FE}(6N) = 0.00 \text{ MK} \text{ MK} \text{ MK} \text{ FE}(6N) = 0.00 \text{ MK} \text{ MK} \text{ MK} \text{ MK} \text{ MK} \text{ MK} \text{ FE}(6N) = 0.00 \text{ MK} $
1.25×10^{-1} MCU(NU ₃) ₂ AND 2.5×10 ⁻¹ MK ₃ FE(CN) ₆ BETWEEN 0.0 AND +1.0 V (VS. AG[AGCL) AT A SCAN
RATE OF 50 MV S ⁻
FIG.3.3.2. CYCLIC VOLTAMMETRIC RESPONSES OF COPPER-COBALT HEXACYANOFERRATE FILM MODIFIED
CARBON PASTE ELECTRODE: 0.25 M KN03; 0.25 M NANO3, SCAN RATE: 10 MV S ⁻¹ 93
FIG.3.3.3 THE CYCLIC VOLTMMOGRAMS OF CUCOHCF-MODIFIED ELECTRODE AT VARIOUS SCAN RATES IN
0.5 M NACL SOLUTION (A): 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 300 MV/S.(B)
RELATIONSHIP BETWEEN THE PEAK POTENTIAL (Δ EP) AND THE LOGARITHM OF SCAN RATE (LOG N)
FOR CUCOHCF-MODIFIED ELECTRODE IN 0.25 M NACL SOLUTION AND THE LINEAR FITTING AT SCAN
84 BATES EROM 170 MV/S TO 600 MV/S
FIG 3.3.4. CYCLIC VOLTAMMOGRAMS (A) AT BARE CARBON PASTE (B) BARE CARBON PASTE IN 1 MM
ELECTRODE AND (D) A CARBON PASTE ELECTRODE IN THE POTENTIAL RANGE 0.0-1V. CONDITIONS: A
SCAN RATE OF 40MV S-1 IN 0.1M PHOSPHATE BUFFER, PH 7.0
FIG.3.3.5 INSET A: DEPENDENCE OF THE CYCLIC VOLTAMMETRIC RESPONSE AT A COPPER-COBALT
HEXACYANOFERRATE MODIFIED CARBON PASTE ELECTRODE ON SWEEP RATE IN 0.1M PHOSPHATE
BUFFER (PH 7.0) CONTAINING 0.4 MM THIOUREA. SCAN RATE: 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100
AND 110 MVS ⁻¹ , RESPECTIVELY. INSET B: VARIATION OF THE CATALYTIC CURRENT WITH THE SQUARE
ROOT OF SWEEP RATE
FIG.3.3.6 DEPENDENCE OF THE OXIDATION CURRENT OF 0.6 MM THIOUREA ON PH VALUES IN 0.1 M
SODIUM PHOSPHATE BUFFER AND AT A SCAN RATE OF 40 MV S ⁻¹
FIG 3 3 7 PLOT OF EP VS LOG (N) COPPER-COBALT HEXACYANOFERRATE MODIFIED CARBON PASTE
ELECTRODE ON SWEEP RATE IN 0 1M PHOSPHATE BLIEFER (PH 7 0) CONTAINING 0 4 MM THIOLIREA
SCAN DATE: 10 20 20 40 E0 60 70 90 00 100 M/ S^{-1}
SCAN RATE: 10, 20, 50, 40, 50, 60, 70, 80, 90, 100 MW 3
FIG.3.3.8. (A) CHRONOAMPEROMETRIC RESPONSE OF THE CUCOHCF FILM ELECTRODE IN 40 MM
UNIVERSAL BUFFER SOLUTION PH 7.0, CONTAINING DIFFERENT CONCENTRATIONS OF THIOUREA FOR
A POTENTIAL STEP OF +0.9 V VS. AG/AGCL. THE NUMBERS 1 TO5 CORRESPOND TO 0–40 MM OF
THIOUREA. INSET SHOWS THE VARIATION OF CHRONOAMPEROMETRIC CURRENTS AT $T = 60$ S VS.
THIOUREA CONCENTRATION. (B) PLOT OF I VS. $T^{-1/2}$ OBTAINED FROM CHRONOAMPEROGRAMS (A)
FOR THE SAME CONCENTRATIONS OF THIOUREA. INSET(C) SHOWS THE RELATIONSHIP BETWEEN THE
SLOPES OF THE LINES AND CONCENTRATIONS FOR DIFFUSION COEFFICIENT (D) EVALUATION 103
FIG. 3.3.9 THE PLOT OF $ICAT/ID$ VS. $T^{1/2}$ FROM CHRONOAMPEROMETRY FOR 0.08 MM THIOUREA AT
OPTIMUM CONDITIONS FOR CATALYTIC RATE CONSTANT (K^{1}) EVALUATION 105
FIG 3.3.10 INSET (A) LINEAR SWEEP VOI TAMMOGRAMS ORTAINED ON THE GLASSY CARRON ELECTRODE IN
CORRESPOND TO 3, 6, 12, 24, 36, 54, 72, 90 AND 120 MM OF THIOUREA RESPECTIVELY. INSET(B)

SHOWS CALIBRATION CURVE OBTAINED FROM VARIATION OF PEAK CURRENT AS A FUNCTION OF	
THIOUREA CONCENTRATION	. 106
NUMBER 1: HIGH RESOLUTION MASS COMPOUND 6A	II
NUMBER 2: ¹ H NMR COMPOUND 6A (IN DMSO-D6)	II
NUMBER 2: ¹³ C NMR COMPOUND 6A (IN DMSO-D6)	III
NUMBER 3: IR COMPOUND 6A	III
NUMBER 4: HIGH RESOLUTION MASS COMPOUND 6B	IV
NUMBER 2: ¹ H NMR COMPOUND 6B (IN DMSO-D6)ERROR! BOOKMARK NOT DEFINE	ED.IV
NUMBER 2: ¹ H NMR COMPOUND 6B (IN DMSO-D6) ERROR! BOOKMARK NOT DEFINE NUMBER 2: ¹³ C NMR COMPOUND 6B (IN DMSO-D6)	E D. IV
NUMBER 2: ¹ H NMR COMPOUND 6B (IN DMSO-D6) ERROR! BOOKMARK NOT DEFINI NUMBER 2: ¹³ C NMR COMPOUND 6B (IN DMSO-D6) NUMBER 5: IR COMPOUND 6B	E D. IV V
NUMBER 2: ¹ H NMR COMPOUND 6B (IN DMSO-D6) ERROR! BOOKMARK NOT DEFINI NUMBER 2: ¹³ C NMR COMPOUND 6B (IN DMSO-D6) NUMBER 5: IR COMPOUND 6B NUMBER 6: HIGH RESOLUTION MASS COMPOUND 6C	E D. IV V V
NUMBER 2: ¹ H NMR COMPOUND 6B (IN DMSO-D6) ERROR! BOOKMARK NOT DEFINI NUMBER 2: ¹³ C NMR COMPOUND 6B (IN DMSO-D6) NUMBER 5: IR COMPOUND 6B NUMBER 6: HIGH RESOLUTION MASS COMPOUND 6C NUMBER 2: ¹ H NMR COMPOUND 6C (IN DMSO-D6)	E D. IV V V VI IV
NUMBER 2: ¹ H NMR COMPOUND 6B (IN DMSO-D6) ERROR! BOOKMARK NOT DEFINI NUMBER 2: ¹³ C NMR COMPOUND 6B (IN DMSO-D6) NUMBER 5: IR COMPOUND 6B NUMBER 6: HIGH RESOLUTION MASS COMPOUND 6C NUMBER 2: ¹ H NMR COMPOUND 6C (IN DMSO-D6) NUMBER 2: ¹³ C NMR COMPOUND 6C (IN DMSO-D6)	E D. IV V V VI IV

List of table

Page

Table. 2.2.1 cyclic voltammetric results and binding constant (calculated from cv results) of ola	nzapine (10^{-3}
mol dm ⁻³) in the presence of dna	67
Table .2.3.2 differential pulse voltammetric results and binding constant (calculated from dpv r	esults) of the
olanzapine (10^{-3} mol dm $^{-3}$) in the presence of dna	
Table 2.2.3.analysis of olanzapine in real samples (n=3)	
Table 2.2.4.comparsion of the proposed UV-DNA-FE sensor with other methods	
Table.3.3.1 interference study for the determination of thiourea	107
Table.3.3.2 determination of thiourea in real samples when pH=7 and temperature: (35 \pm 0.5) \circ c	ERROR!
BOOKMARK NOT DEFINED.116	

Part One

Electro-oxidation of catechols in the presence of 4-phenylsemicarbazide

Chapter One

Introduction

History

Electrochemistry and its applications play an important role in the industrial and commercial world. The applications are diverse and ever increasing and cut across many disciplines. An overall perspective of the scope of industrial electrochemistry is summarised as follows [1]:

- Inorganic electrosynthesis
- Extraction and production of metals
- Organic electrosynthesis
- Metal finishing and processing
- Water purification and effluent treatment
- Energy generation
- Corrosion
- Sensors and monitors.

1.1.2. Organic electrosynthesis

Organic electrosynthesis (electrolyses) can be classified as either oxidations or reductions with the reaction being comprised of the substrate, electrodes, electrolyte, solvent and various additives. In a galvanic cell (two electrodes connected by a salt bridge composed of a solution of an electrolyte), oxidations take place at the anode and reductions at the cathode. What makes electrochemical reactions unique from many ionizing reactions is that they take place on the surface of the electrode and produce highly reactive intermediates such as radical-cations (via oxidation) and radical-anions (via reduction) that diffuse into solution [2]. A variety of secondary reactions can ensue from the initial radical-ion species.

Molecules are activated by the addition or removal of electrons at an electrode. This must involve addition to a LUMO (reduction at a cathode) or removal from a HOMO (oxidation at an anode); it is relatively easy to identify which compounds are likely to be reducible or oxidizable qualitatively. Benzene can thus be oxidized to benzoquinone and reduced to 1,4-dihydrobenzene. Many relevant books and reviews are available which cover these and other basic aspects [3-4].

The most important reactive intermediates formed by electrochemical reduction and oxidation are radical-ions, radicals, carbocations and carbanions; radical-ions are usually the first-formed species but fragmentation can lead typically to radicals which may be further reduced or oxidized (Scheme. 1.1.1).

$$AX \xrightarrow{+e} AX^{-} \xrightarrow{-X^{-}} A^{-} \xrightarrow{+e} A^{-}$$
$$AX \xrightarrow{-e} AX^{+} \xrightarrow{-X^{+}} A^{-} \xrightarrow{-e} A^{+}$$

Scheme.1.1.1 Common species formed electrochemically

1.1.3. Trends in electroorganic syntheses

Since the development of Kolbe reaction in 1854, electrosynthesis has become more and more important in organic chemistry due to its following characteristics: unique selectivity because of in situ formation of active species at the interface, inversion in polarity by transfer of electron and variability in product formation by control of potential.

Electroorganic synthesis as a powerful method in organic chemistry has attracted several interest in recent years. Despite the long history of electroorganic chemistry most of the electroorganic reactions that could provide product selectivity have been developed within the last twenty years.

In addition to the aforementioned features there remains also some of advantages electroorganic syntheses which need to be highlighted as followings[2, 4]:

(1) Utilizing very safe and less hazardous processes

(2) Elimination or minimization of polluting by-products requiring laborious disposal

(3) Process simplification (*e.g.* a multi-step chemical route can be simplified to one or two steps)

(4) Use of cheaper and more readily available starting materials and solvents

(5) Significantly less energy requirement, the following diagram illustrates the range in energy of several types of methods in organic chemistry utilizing energy. This may be introduced into molecules by various high energy techniques

(6) The possibility of reaching very high levels of product purity and selectivity

(7) Development of valuable intellectual properties

0	1.0	3.5	6.0	8.0	12.0	ev
	-	Photocher	mistry		Radiation cher	mistry
E	lectroche	mistry				

Scheme.1.1.2 Diagram energy of several types of methods in organic chemistry

(8) Considerably improved capital and operating costs over conventional methods

(9) Convenience in work-up process (there is no chemical redox agents or their byproducts to be removed after completion of the reaction which means that work-up in many cases requires removal of only solvent and electrolyte)

(10) Yields, often adequate or excellent.

Electrochemical routes for organic synthesis must compete with more traditional industrial methods (e.g., heterogeneous and homogeneous catalysis), as well as with emerging methods (e.g., enzymatic catalysis and photocatalysis). All syntheses require application of energy to accomplish the transformation of raw materials. Electrochemical synthesis involves application of a potential, in the presence of active electrode surfaces, and the resulting flow of current drives the oxidation or reduction and subsequent recombination of reactants. [3, 5].

There are several features of electrosynthesis that are often cited as being environmentally favorable. First, electrons flowing as current may be regarded as one of the reagents. Second, reactions may take place in a low-temperature environment, reducing the local consumption of energy, and reducing the risk of corrosion, material failure, and accidental release. Also, reactions may occur in low volatility or no-volatility reaction media. The electrodes may be regarded as heterogeneous catalysts that are easily separated from the products. Supporting electrolyte and electrochemically active mediator species may be regenerated electrochemically and recovered.

Current research on green chemistry and engineering focuses on alternative solvents (such as supercritical carbon dioxide or ionic liquids), feedstocks, and new catalyst