طبقه بندی آبخوانهای کارستی زاگرس بر اساس جهت جریان عمومی آبهای زیرزمینی و خصوصییات فیزیکوشیمیایی

به وسیله ی:

جواد اشجاري

پایان نامه ارائه شده به تحصیلات تکمیلی دانشگاه شیراز به عنوان بخشی از فعالیت های تحصیلی لازم برای اخذ درجه دکتری

در رشته ی:

زمین شناسی-آبشناسی

از دانشگاه شیراز

شيراز

جمهوری اسلامی ایران

مرداد ۱۳۸۶

WAF /V/ 10

ST. Course

74411

IN THE NAME OF GOD

CLASSIFICATION OF ZAGROS KARSTIC AQUIFERS BASED ON GENERAL DIRECTION OF GROUNDWATER FLOW AND PHYSICOCHEMICAL PROPERTIES

BY

JAVAD ASHJARI

THESIS

SUBMITTED TO THE SCHOOL OF GRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF PHILASOPHERI

IN

GEOLOGY AND SCIENCSE

(HYDROGEOLOGY)

SHIRAZ UNIVERSITY

SHIRAZ

ISLAMIC REPUBLIC OF IRAN

EVALUATED AND APPROVED BY THE THESIS COMMITTEE AS: EXCELLENT

E. RAEISI, Ph.D., PROF. OF HYDROGEOLOGY (CHAIRMAN)

N. SAMANI, Ph.D., PROF. OF HYDROGEOLOGY

M. ZARE, Ph.D., ASSISTANCE OF HYDROGEOLOGY

A. R. NEMATOLLAHI, Ph.D., ASSOCIATE PROFF. OF STATISTICS

MAY 2007

To angels,

Acknowledgment

If the reader finds the thesis useful, the credit is entirely due to my supervisor Professor Ezzat Raeisi under who influence I have learned to research and teach.

I would like to express my gratitude and thanks to Professor Samani, Dr. Zare, and Dr. Nematollahi who helped me by the reading entire manuscript with great care and diligence and offering valuable suggestions at various stages.

This thesis was written with the direct and indirect help of many people. I owe a great debt to my parents and my brothers and sisters for their help and encouragement. Had it not been for them. I probably would not have been able to complete even my secondary school.

I wish to express my appreciation to the Karst Research Centre of Iran, Fars Regional Water Board and other companies for assistance of data collection.

I would like to express my gratitude to the members of ISSKA in Switzerland where I spend sabbatical period.

ABSTRACT

CLASSIFICATION OF ZAGROS KARSTIC AQUIFERS BASED ON GENERAL DIRECTION OF GROUNDWATER FLOW AND PHYSICO-CHEMICAL PROPERTIES

BY

JAVAD ASHJARI

Seventy two of the Zagros karstic anticlines were divided into two main groups based on the hydrogeological relationship of the flanks. The geological settings are the main controlling factors in these two groups. Each group was further classified into four subgroups based on the location of the discharging zone(s), namely one or both plunges, flank(s), traverse river, and combination of plunges, flanks and river. The discharging zone(s) are mainly controlled by the local base level. The main factors controlling the general direction of flow are thus determined to be the local base level, and the lithological and geological settings. Based on the geometry of the anticline and outflow position, a conceptual model is presented for delineation of the flow direction, at least within the Zagros Range. Hydrochemical data from 195 karst springs emerging from 5 different karstic formations in the Zagros region were classified based on the water type, major ions and specific conductance. The main factors controlling the groundwater composition are lithology of the neighboring formations, the salt domes and saline water from adjacent lakes or alluvium aquifers.

Content

Title	Pag
Table of content	7
Table of tables	XI
Table of figures	XII
1.Introduction and literature review]
1-1. Introduction	2
1-2. Aims and objectives	3
1-3. General groundwater flow direction	4
1-3-1. Stratigraphy and lithology	5
1-3-2. Geological Structures	5
1-3-3. Relief and base level	8
1-4. Chemistry of carbonate aquifers	9
1-4-1. Precipitation	10
1-4-2. Lithology	11
1-4-3. Type of recharge	14
1-4-4. Type of flow	15
1-4-5. Saline water intrusion	16
1-4-6. Anthropogenic processes	18
2. Method of Study	19
2-1. Data Collection and determination of the catchment area	20
2-2. Statistical method	22
3. Hydrogeology of study areas	25

26
27
28
29
29
30
30
30
31
31
32
32
33
33
33
34
35
35
36
37
37
37
88
8

Title	Page
3-3. Hydrogeology of the study anticlines	38
3-3-1. Illam Province	39
3-3-1-1. Saravan anticline (A1)	39
3-3-1-2. Kalkuh anticline (A2)	41
2-3-1-3. Ghalajeh antičline (A3)	41
3-3-1-4. Benekhoshk anticline (A4)	41
3-3-1-5. Patagh anticline (A5)	41
3-3-1-6. Rijab anticline (A6)	43
3-3-1-7. Emmam Hassan anticline (A7)	. 43
3-3-1-8. Ravandi anticline	44
3-3-2. Fars Region	45
3-3-2-1. Rooshan anticline (B1)	46
3-3-2-2. Podenow anticline (B2)	46
3-3-2-3. Sim anticline (B3)	48
3-3-2-4. Daloo-Sefidar anticline (B4)	49
3-3-2-5. Sarbalesh anticline (B5)	50
3-3-2-6. Dashtak anticline (B6)	51
3-3-2-7. Gar and Barm-Firooz anticline (B7)	53
3-3-2-8. Bareh anticline (B7)	53
3-3-2-9. Derak anticline (B8)	55
3-3-2-10. Dalneshin anticline (B9)	56
3-3-2-11. Tammar anticline (B11)	57
3-3-2-12. Siroo and Jaein anticlines (B11)	58
3-3-2-13. Namak anticline (B12)	59

itle	•	Page
	3-3-2-14. Khurmuj anticline (B13)	60
	3-3-2-15. Siah-Bushehr anticline (B14)	62
	3-3-2-16. Kartang anticline (B15)	63
	3-3-2-17. Gallisakan anticline (B16)	64
	3-3-2-18. Karba anticline (B17)	65
	3-3-2-19. Kharmankuh anticline (B18)	66
	3-3-2-20. Nazarabad anticline (B19)	67
	3-3-2-21. Ahmadi anticline (B20)	68
	3-3-2-22. Khanehkat anticline (B21)	69
	3-3-2-23. Rahmat anticline (B22)	70
	3-3-2-24. Alhare I, II anticlines (B23, B24)	71
	3-3-2-25. Bareaftab anticline (B25)	72
	3-3-2-26. Behkhun anticline (B26)	73
	3-3-2-27. Vanaman and Laie Zangan anticlines (B27)	74
	3-3-2-28. Sabzposhan anticline (B28)	75
	3-3-2-29. Ghareh anticline (B29)	76
	3-3-2-30. Zena and Panikarteh anticline (B30)	77
·	3-3-2-31. Dashtak-Fars anticline (B31)	78
	3-3-2-32. Sinehaftab and Gandashloo anticlines (B32)	79
	3-3-2-33. Kaftarak anticline (B33)	79
	3-3-2-34. Ab-Siah anticline (B34)	80
	3-3-2-35. Baghestan anticline (B35)	81
	3-3-2-36. Darishak anticline (B36)	83
	3-3-2-37. Bamu anticline (B37)	83

Title	Pag
3-3-2-38. Chapeer anticline (B38)	84
3-3-2-39. Darughak anticline (B39)	85
3-3-2-40. Laeisavar, Zarabi and Plangan anticlines (B40)	86
3-3-2-41. Droudzan (Ghaltoon) anticline (B41)	87
3-3-2-42. Yar anticline (B41)	88
3-3-2-43. Ghasre-Ghomsheh anticline (B42)	89
3-5-2-44. Haji-Abad anticline (B43)	89
3-3-2-45. Kalehbadi anticline (B44)	90
3-3-2-46. Omar-Moussa anticline (B45)	90
3-3-2-47. Sangesiah anticline (B46)	91
3-3-2-48. Salbiz anticline (B47)	92
3-3-2-49. Tange Bostanag anticline (B48)	93
3-3-2-50. Siah-Hossien anticline (B49)	94
3-3-2-51. Zarghan and Chahanari anticlines (B50)	95
3-3-2-52. Siah-Saydan anticline (B51)	96
3-3-2-53. Paree-Payeen anticline (B52)	97
3-3-2-54. Sayeedmohammad anticline (B53)	98
3-3-2-55. Shahneshin anticline (B54)	99
4. Controlling factors of general direction groundwater flow	101
4-1. Introduction	102
4-2. Classificaion of anticlines based on regional groundwater flow	103
4-2-1. Group A: No hydrogeological connections between flanks	103
4-2-1-1. Subgroup AI: Discharge from one or both plunges	104
4-2-1-2. Subgroup-AII: Karst water discharge from flanks	109

Title	Page
4-2-1-3. Subgroup-AIII: Karst water discharges to the river traversing the fold	111
4-2-1-4. Subgroup-AIV: Karst water discharges from a combination of plunge (s), flank(s), and/or river	112
4-2-2. Group B: Hydrogeological relationship of northern and southern flanks are connected	115
4-2-2-1. Subgroup BI: Karst water discharges from one or both plunges of the fold	116
4-2-2. Subgroup BII: Karst water discharges only from one flank of the fold	117
4-2-2-3. Subgroup BIII: Groundwater discharges to the river	118
4-2-2-4. Subgroup BIV: Groundwater discharge from a combination of flank, plunge and/or river	119
4-2-3. Conceptual model of general direction of groundwater flow in Zagros Range	120
4-2-4. Conclusions	122
5. Hydrochemical Characteristics of Zagros aquifers	130
5-1. Introduction	131
5-2. Chemical characteristics of aquifers in Fars Province	131
5-2-1. Daryian-Gadvan-Fahlyian (DGF)	136
5-2-2. Saravk (Sa)	138
5-2-3. Tarbur (Ta)	140
5-2-4. Asmari-Jahrum (AJ)	141
5-2-5. Guri (Gu)	143
5-3. Ca/Mg Ratio	144

Title	Page
5-4. Chemical characteristics of springs in part of Illam Region	144
5-6.Conclusion	148
6.Conclusion	151
References	156
Appendix	168
Abstract (Farsi)	

List of tables

Table	Page
Table 1-1: Rainwater analyses of different parts of the world (values in	11
μmol/L)	
Table 4-1: Summary of geologic and geomorphologic characteristics of	124
under study anticlines	
Table 4-2: Summery of classification of selected karstic anticlines in the	128
Zagros Range	
Table 5-1: Classification of karst springs based on SC and water type. Unit	134
of average ion concentration is epm	
Table 5-2: Classification of springs based on major ions and SC using	135
discriminate analysis	
Table 5-3. Water types, number of springs, discharge, SC range and major	137
ions of karst formations in each group. Unit of concentration is epm	
Table 5-4: Number of springs for each overlying and underlying	142
formations of Asmari-Jahrum in each group	
Table 5-5: Classification of karst springs based on SC and water type in	146
part of Illam Region. Unit of average ion concentration is epm	
Table 5-6. Classification of springs in part of Illam Region based on major	147
ions and SC using discriminate analysis	
Table 5-7. The lithology of karst formations, contact lithology of overlying	150
and underlying formations and number of springs in each groups	

Caption of figures

Title	Page
Figure 1-1: Map of carbonate formations distribution in Iran	2
Figure 1-2: Conceptual model of general direction of groundwater flow	4
Figure 3-1: Location map of the study areas	27
Figure 3-2: Stratigraphic column through the Zagros Range in the study	28
areas	
Figure 3-3: The geological and hydrogeological map of Illam Region	40
Figure 3-4: The hydrogeological map of the Ravandi Anticline.	44
Figure 3-5: Location map of the selected anticlines in Fars Province	45
Figure 3-6: The hydrogeological map of the Rooshan anticline.	46
Figure 3-7: The hydrogeological map of central area of the Podenow	47
anticline	
Figure 3-8: The hydrogeological map of the Sim anticline	48
Figure 3-9: The hydrogeological map of the Daloo-Sefidar anticline	49
Figure 3-10: The hydrogeological map of the Sarbalesh anticline	51
Figure 3-11: The hydrogeological map of the Dashtak anticline	52
Figure 3-12: The hydrogeological map of the Gar and the Barm-Firooz	54
anticline	
Figure 3-13: The hydrogeological map of the Bareh anticline	55
Figure 3-14: The hydrogeological map of the Derak anticline	56
Figure 3-15: The hydrogeological map of the Dalneshin anticline	57
Figure 3-16: The hydrogeological map of the Tammar anticline	58
Figure 3-17: The hydrogeological map of the Siroo and the Jaein anticlines	59
Figure 3-18: The hydrogeological map of the Namak anticline	60
Figure 3-19: The hydrogeological map of the Khurmuj anticline	61
Figure 3-20: The hydrogeological map of the Siah-Busher anticline	62
Figure 3-21: The hydrogeological map of the Kartang anticline	63
Figure 3-22: The hydrogeological map of the Gallisakan anticline	64
Figure 3-23: The hydrogeological map of the Karba ant	65
Figure 3-24: The hydrogeological map of the Kharmankuh anticline	66

Title	Page
Figure 3-25: The hydrogeological map of the Nazarabad anticline	67
Figure 3-26: The hydrogeological map of the Ahmadi anticline	68
Figure 3-27: The hydrogeological map of the Khanehkat anticline	69
Figure 3-28: The hydrogeological map of the Rahmat anticline	70
Figure 3-29: The hydrogeological map of the Alhare I and the Alhare II anticlines	71
Figure 3-30: The hydrogeological map of the Bareaftab anticline	72
Figure 3-31: The hydrogeological map of the Bahkhun anticline	73
Figure 3-32: The hydrogeological map of the Vanaman and the Laie	74
Zangan anticlines	
Figure 3-33: The hydrogeological map of the Sabzposhan anticline	75
Figure 3-34: The hydrogeological map of the Ghareh anticline	76
Figure 3-35: The hydrogeological map of the Zena and the Panikarteh	77
anticlines	
Figure 3-36: The hydrogeological map of the Dashtak-Fars anticline	78
Figure 3-37: The hydrogeological map of the Sinehaftab and the	79
Gandashloo anticlines	
Figure 3-38: The hydrogeological map of the Bamu, the Ghasre Ghomsheh	80
and the Kaftrak anticlines	
Figure 3-39: The hydrogeological map of the Ab-Siah anticline	81
Figure 3-40: The hydrogeological map of the Baghestan anticline	82
Figure 3-41: The hydrogeological map of the Darishak anticline	84
Figure 3-42: The hydrogeological map of the Chapeer anticline.	85
Figure 3-43: The hydrogeological map of the Darughak anticline.	86
Figure 3-44: The hydrogeological map of the Laeisavar, the Zarabi, the	87
Plangan and the Kalehbadi anticlines	
Figure 3-45: The hydrogeological map of the Droudzan and the Yar	88
anticlines	
Figure 3-46: The hydrogeological map of the Haji-Abad anticline	90
Figure 3-47: The hydrogeological map of the Omar-Moussa anticline	91
Figure 3-48: The hydrogeological map of the Sangesiah anticline	92

Title	Page
Figure 3-49: The hydrogeological map of the Salbiz anticline	93
Figure 3-50: The hydrogeological map of the Tange Bostanag anticline	94
Figure 3-51: The hydrogeological map of the Siah-Hossien anticline	95
Figure 3-52: The hydrogeological map of the Zarghan and the Chahanari	96
anticlines	
Figure 3-53: The hydrogeological map of the Siah-Saydan anticline	97
Figure 3-54: The hydrogeological map of the Paree-Payeen anticline	98
Figure 3-55: The hydrogeological map of the Sayeedmohammad Anticline	99
Figure 3-56: The hydrogeological map of the Shahneshin Anticline	100
Figure 4-1: Hydrogeological maps and regional flow pattern (A) and	106
geological cross sections (B) of Derak Anticline.	
Figure 4-2: Hydrogeological maps and regional flow pattern (A) and	107
geological cross sections (B) of Gar and Barm-Firooz Anticline	
Figure 4-3: Hydrogeological maps and regional flow pattern (A) and	109
geological cross sections (B) of Sim Anticline	
Figure 4-4: Hydrogeological maps and regional flow pattern (A) and	114
geological cross sections (B and C) of Dashtak Anticline	
Figure 4-5: Hydrogeological maps and regional flow pattern (A) and	117
geological cross sections (B) of Roshan Anticline	
Figure 4-6: Hydrogeological maps and regional flow pattern (A) and	118
geological cross sections (B) of Ravandi Anticline	
Figure 4-7: Hydrogeological maps and regional flow pattern (A) and	119
geological cross sections (B) of Podenow Anticline	
Figure 4-8: Proposed conceptual model based on geometry and output	122
location in anticlines of Zagros Range	
Figure 5-1: The number springs of each carbonate formations verse	132
outcrop area	
Figure 5-2. Variation of major anions for springs with SC $< 2000 \mu S/cm$	134
Figure 5-3: Variation of major anions with SC for all springs	135
Figure 5-4: Variation of major anions with SC for springs of Daryian-	138
Gadvan-Fahlyian	

Title	Page
Figure 5-5: Variation of major anions with SC for springs of Sarvak in	139
Group B_1 and B_2	
Figure 5-6: Variation of major anions with SC for all springs of Tarbur	136
Figure 5-6: Variation of major anions with SC for all springs of Guri	140
Figure 5-7: Calcium and magnesium relationship in Group B1	145
Figure 5-8: Ca/Mg Ratios verse specific conductivity for a) springs with	145
specific conductivity less than 1850 μS cm ⁻¹ b) for all springs	
Figure 5-9: Variation of major anions with SC for all springs in part of	147
Illam Region	

Chapter One

Introduction and Literature Review

1-Introduction and literature review

1-1. Introduction

Karstified rocks can be found in all parts of the world. Karst is estimated to cover 20% to 25% of the surface of all continents (Bonacci, 1990). In Iran, Karstic carbonate formations outcrop in about 11% of the land area, with a total area of 180,000 km² (Figure 1-1).

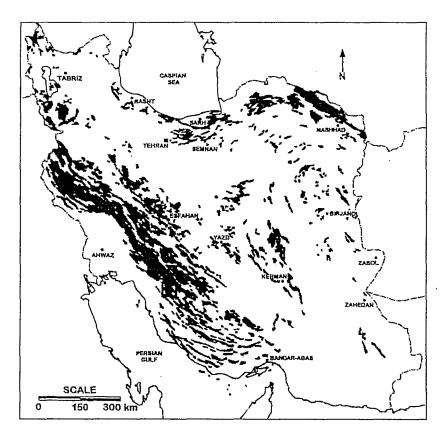


Figure 1-1: Map of carbonate formations distribution in Iran (Naseri 1991).

Carbonate karstic formations outcrop in about 23% of the Zagros Mountain Range (Raeisi and Kowsar, 1997). The hydrogeological studies of

Zagros were started in Iran, and were mostly carried out by Shiraz University, the Karst Research Institute of Iran and Ministry of Energy. Most of the karst studies in Zagros have focused on the central-south of Iran (Fars Province) and a few studies in the west of Iran (Illam Province). These studies are based on the researches such as: Naseri, 1991; Jahani 1993; Rajaei 1999; Rezaei 1998; Eftekhari 1994; Kowsar 1995; Pezeshkpour 1991; Raeisi 2002; Raeisi et al., 1993, 2001, 2003, 2005; Raeisi and Karami 1996, 1997; Rahnemaie 1994; Karst Research Institute of Iran 1993, 1995, 1996, 2000; Nejati 1992; Milanovic and Aghili 1990; Asadi 1998; Asadpour 2001; Johnparvar 2001; Favakeh 2006; Rahimi 2006; Keshavarz 2003; Karimi-Vardanjani 2003. The general flow direction was only determined in a few anticlines in Zagros Range, but the controlling factors on the general flow direction have not yet been studied in the Zagros karstic formations.

Folding is the main characteristic of the Zagros Range. Karst formations in the Zagros are usually sandwiched between impermeable non-carbonate formations, forming independent highland aquifers. The overlying and underlying formations are composed of marl, gypsum while the interlayers are halite in some parts of the Zagros, causing a reduction of karst water quality. Salt domes are in direct contact with karst formations in some of the anticlines, deteriorating the quality of karst water. Intrusion of saline water from an adjacent lake or alluvium aquifer into a karst aquifer is another source of water quality reduction in the Zagros.

1-2. Aims and objectives

The main objectives of the present research are as follows:

- 1- To determine the typical general flow direction and its dominant controlling factors;
- 2- To present a scheme of classification of karst springs in the study area based on general flow direction and hydrochemical characteristics;