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ABSTRACT
CALCULATION OF THE SECOND VIRIAL COEFFICIENT
OF NONSPHERICAL MOLECULES

BY
FARKHONDEH MOZAFFARI

A method for the calculation of the second virial coefficients of the
nonspherical interactions, which are only asymptotically valid at large
separation are improved by damping functions that make them to be valid
at small separations as well.

An accurate Hartree-Fock dispersion individually damped (HFD-ID)
potential type improved by Boyes for argon has been used as a core
potential to calculate both the spherical and nonspherical contributions to
the second virial coefficient of simple molecules.

The auxiliary functions that occur in the perturbation terms for
calculating the nonspherical contributions, have been calculated
numerically and are tabulated over a wide range of temperatures from
T'=0.5 to T'=10, where T*=kT/e and € is the potential well-depth. By
fitting the well-depth and the position of the minimum in the core
potential, we have calculated the second virial coefficient of N,, 0,, CO,
NO, and CO, over the whole temperature range reported in the literature.
The calculated results are compared with the large body of experimental
data in the literature, and with the pervious calculations by Boushehri et

al. (1989). The agreement with both experimental data and theoretical

calculations is quite good.
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Nomenclature(Continued)
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Chapter one
INTRODUCTION

1-1 Equation of State of Gases
An equation of state of a gas merely given a mathematical relation
among the pressure, volume, temperature and number of moles (P,V,T,n)

at equilibrium. The simplest equation of state is that for the perfect gas, as,
PV=nRT.

1-2 The Equation of State in the Virial Form

Several authors have proposed the modifications of the perfect gas
equation of state. K.Onnes in 1901 suggested the idea of expressing the
pressure in a convergent series in terms of the reciprocal molar volume

and the absolute temperature. In this suggestion the equation of state of a

gas expressed in virial form:

PV=RT(1+§+£—+£+...) (1.2.1)
V VZ V3

where P,V and T are parameters of state , R is the gas constant, and
B,C,D,... are called the second , third, fourth,... virial coefficients
depending on the temperature only.

It has been known that deviations in the behavior of real gases from
that of a perfect gas are essentially due to molecular interactions. From the
statistical mechanical expressions for the virial coefficients it becomes
evident that the second, third,... virial coefficients represent deviations
from ideal behavior, and are due to two body, three body,... molecular
collisions.

At not too high densities the third and higher order terms might be

neglected. Furthermore, at high densities many terms of the series must be
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included to obtain satisfactory accuracy, and this means that many
parameters (the virial coefficients) have to be determined experimentally.
The reason for the special importance of the virial equation of state is
that it is the equation of state known which has been obtained from a
theoretical foundation. There is a definite interpretation for each virial
coefficient in terms of molecular properties. The second virial coefficient

represents the interactions between two molecules; the third represents the

interactions among three molecules, and so on. Thus the virial equation of !
_state forms the connection between experimental values of the second
virial coefficients have often been employed to determine the parameters
in different expressions of the intermolecular potentials and knowledge :

interactions. The well known statistical mechanical expression for the

second virial coefficient reads as:'

2n

B(T):E? j j H [1—exp(-V/KD)Ir drsing, d6, sin6, d6, dg, de,
87:0 00 0 ¢

(1.2.2)

where N is the Avogadro 's number, k is the Boltzmann's  constant, T is
the absolute temperature, and 8 and ¢ are the usual Eulerian angels. |

There are two reasons on the importance of calculation of the second
virial coefficient: The first reason is its use in the construction of equation
of state of gases. The second reason is the relation between the second
virial coefficient, which is a macroscopic property, and the intermolecular
potential energy function of gases which is a microscopic property via

statistical thermodynamics, Eq(1.2.2).

1-3 The intermolecular potential energy of polyatomic molecules

The intermolecular potential energy of polyatomic molecules is

usually assumed to consist of a spherically symmetric component plus a




contribution due to the asphericity of the molecular charge distribution, so
that

V(r)=Vy(r)+V,(r) (1.3.1)

in which V; depends only on the distance r between the molecular center of

mass, and V,, depends also on the angle o that specifies the relative orientation

of the molecular pair.
. One of the most famous intermolecular potential functions which gives a fairly
simple and realistic representation for spherical charge distribution calculations

is the Lennard-Jones (12-6) potential energy function introduced in 1924 and is

described? as:

[/ N2, N6

Vo(r) =4egg ng —L%—J } (1.3.2)

where €, is the potential well depth and o indicates the intermolecular
distance at which repulsive and attractive forces are equal in magnitude,

and thus cancel each other.

1-4 Calculation of the second virial coefficients of the nonspherical
molecules
A common method for the calculation of the second virial
coefficients of the nonspherical molecules is the perturbation procedure
developed by Pople’ and by Buckinghom and Pople,* who represent the
intermolecular potential function as a spherically symmetric core plus
terms representing various nonspherical interactions such as dipole-dipole,
quadrupole-quadrupole, and dispersion anisotropy interactions.
The nonspherical terms are then treated as perturbations, and the-

statistical mechanical expressions that given corrections to the spherical
5




contributions in the form of series that converge rapidly for high
temperatures. The coefficient of the series are integrals that are functions
of temperature and are tabulated.>®

A difficulty in the foregoing development is the form, which is
usually assumed for the long-range nonspherical terms in the potential
function. These terms are given by various inverse power of the
intermolecular separation, but is nevertheless kept in the subsequent
mtegration even down to r=0 separation. Evidently the magnitude of the
long-range terms should be decreased, as r decreases in order to account
for electron overlap and exchange.

This point was recognized quite early by castle et al.” who did
exploratory calculations, using a Lennard-Jones (12-6) spherical-core
potential function with a number of added nons
In the absence of at that time of any information of the quantitative nature
of the damping of long-range terms as r decreased, they used a simple cut
off at r=c, the separation at which the spherical potential is zero. They

found that the coefficient of the series expression were reduced by roughly

. kT .
20% at T=— =] and by a factor of about 2 at T =10, where ¢, is the
€

depth of spherical potential well, k is the Boltzmann constant, and T is
absolute temperature.

The effect of nonspherical contributions to the total second virial
coefficients amounted to less than 6% at T"=1 and less than 1% at T'=10,
Thus the overall effect of cutting off the asymptotic long-range
nonspherical potentials was small but not negligible.

Since that time the nature of damping of the long-range terms has
been greatly understood, and multiplicative damping functions that

convert the asymptotic formulas valid at large separation r, into those

valid at all r have been developed.




