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Abstract

FABRICATION OF POLYMERIC-BASED SOFT MAGNETIC COMPOSITES
AND MEASUREMENT OF THE MAGNETIC PROPERTIES

By:

Hooman Shokrollahi

Iron powder with high purity was covered by a polyepoxy, DDS and DGEBA (4,4’-
Diaminodiphenyl Sulfone, C12H12N202S, and Diglycidyl Ether of Bis Phenol A)
and effect of amount of resin, different curing treatments and compaction pressure on
the magnetic properties, residual stresses, densification and microstructure were
examined. Results showed that the samples with double insulation layers of
phosphate and polyepoxy had minimum power loss. Also, the sample with 3wt%
polyepoxy compacted at 800MPa had an acceptable real part of permeability and
minimum imaginary part of permeability in comparison with other samples. Partial
curing treatment reduced the imaginary part of permeability; and annealing treatment
reduced this part of permeability and increased the real part of permeability. The
permeability of small-size particles, 30 pm, was lower than that of large-size
particles, 100um and 50pm, at low frequencies (<200 Hz) and was higher than that of
large-size particles at high frequencies (>200 Hz). The permeability value for the
sample with a diameter about 30pm was higher than (35%) that of the sample with
100pum diameter. Compaction experiments showed that increasing the pressure and
applying warm compaction and two-step compaction methods for iron powders
increased the magnetic induction and density and decreased the core loss. Different
annealing (two steps annealing and magnetic annealing) treatments were applied to
some samples. It was found that at low frequencies (<10kHz) the magnetic loss in the
high-temperature magnetic annealed state (280°C/0.5T) was smaller than that in the
low-temperature magnetic annealed (180°C/0.5T) and without annealing state. On the
contrary, the magnetic loss in the high-temperature magnetic annealed state was
larger at high frequencies (>10kHz) than the others. The results showed that magnetic
loss of annealed powder was smaller than that of unannealed powder after 100 hours
milling process. By loss separation technique (P/f=C0+C1f+C2f”2), different magnetic
losses and the related coefficients for two different composites including single
insulation layer (iron phosphate) and double insulation layer (iron ‘
phosphate+polyepoxy) were calculated. The results showed that the sample with
double layer coating had lower bulk eddy currents.
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Chapter 1
Introduction

During the last several years, interest in the study of Soft Magnetic Composites
(SMCs) has been increasing at an accelerating rate, stimulated by recent advances in
materials synthesis and characterization techniques and the realization that these
materials exhibit many unique and interesting physical and chemical properties with a
number of potential technological applications. These composite materials offer
several advantages over traditional laminated steel cores in most applications. The
unique properties include three—dimensional (3D) isotropic ferromagnetic behavior,
very low eddy current loss, relatively low total core loss at medium and high
frequencies, possibilities for improved thermal characteristics, flexible machine
- design and assembly and a prospect for greatly reduced weight and production costs.
Figure 1.1 shows the applicable regions for several soft magnetic materials used in
AC magnetic fields. Soft ferrite has low core loss in the high frequency region, but
due to its low magnetic flux density, it has the drawback of requiring a large core.
Electrical steel sheets have high flux density, but electrical sheets cannot be used in
the high frequency region due to the excessive core loss. Powder cores are magnetic
materials which cover the region where the former two magnetic materials cannot be
used.

SMCs, which are used in electromagnetic applications, can be described as
ferromagnetic powder particles or soft magnetic powders surrounded by an electrical
insulating film (Fig. 1.2). This insulating film can reduce the eddy currents at
relatively high frequencies. Figure 1.3 shows the ring shaped component with coated
iron powder exhibits lower power loss. The magnetically soft powders must combine
as many as possible of the following characteristics at moderate cost: (1) low
hysteresis losses, (2) low eddy current losses, (3) high permeability at low field
strength, (4) high saturation value, (5) no aging effects and (6) uniform magnetic
characteristics.

Insulation materials used for SMCs can be divided into two categories: organic and
inorganic materials. Inorganic coatings can be subdivided into several categories;
metallic oxide coatings (such as, Fe;O3), phosphate coatings (zinc phosphate, iron
phosphate and manganese phosphate), and sulfate coatings. Organic coatings can be
subdivided into three categories, thermoplastic ~coatings, ~elastomers and
thermosetting coatings. Thermoset resins have several advantages over thermoplastic
and elastomeric materials. The selection of a thermoset instead of a thermoplastic is
done to minimize the effect of the temperature variations on the magnetic and
mechanical properties of the composites. Some of the thermosets which are used for

coating are listed in table 1.1.
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Fig. 1.1. The applicable regions for soft magnetic materials used in AC magnetic fields.
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Fig. 1.2. A schematic diagrarh’bf the component eleé;li; of a powder core [65].
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Fig. 1.3. The total losses for ring shaped components with un-coated and coated iron powder
particles.



