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Abstract

The presence of defects such as impurities and structural defects (vacandie
Stone-Wale defects) particularly affect the electronic properties of nbast Con-
sidering various potential applications of nanotubes (e.g. electrical cirgaiss
sensors and transistors), we decided to investigate the electronictspépure

and defected nanotubes (NTs). To this ealdnljnitio calculations usually are the
best, specially density functional theory (DFT) based methods. In this regard,
lous kinds of NTs such as Single-walled (SW) and double-walled (DW) carbon
nanotubes (CNT), boron nitride nanotubes (BNNT) and gallium nitride nanotubes
(GaNNT) were analyzed.

Boron nitride semiconducting zigzag SWCN3ypNernC1_cb_cn, @S a potential
candidate for making nanoelectronic devices was examined. In contrast to the pre-
vious DFT calculations, wherein just one boron and nitrogen doping configuration
have been considered, here for the average over all possible configurations, den-
sity of states (DOS) was calculated in terms of boron and nitrogen contiensra
It was shown that semiconducting average g&p could be controlled by doping
nitrogen and boron. But in contrast to many-body techniques where gap edge in
the average DOS is sharp, the gap edge is smeared and impurity statesimappear
the SWCNT semiconducting gap. For each boron and nitrogen concentrations,
also, exact magnitude of the energy gég, was calculated.

Furthermore, Density functional theory (DFT) calculations of the Stone-Wales
defected (S-WD) single-walled carbon nanotube (CNT) (10,0) were carried out t
understand the effect of S-WD orientations on the electronic properties of CNT.
We have considered the influence of supercell approximation on the defect for-
mation energy and the electronic properties of both circumferential and a¥ial S



defects in CNT. We found that the probability of S-WD orientation depends on
the defect concentration. Density of states of defected CNTs calculatioes hav
been applied to indicate the effect of S-WD concentration on the semiconducting
energy gap. Utilizing local density of states investigation, also, weagxgdl the
reasons of foreign atoms and molecules adsorption on S-WDs .

All BN nanotubes are semiconductor nanostructures regardless of diameter or
chirality, in contrast to the carbon nanotubes that have both metallic and semi
conducting features. In this case, the electronic properties of defected 8fdN
spin-up and spin-down electrons were explored. We have looked into two types of
defects, vacancy and substitution of carbon and oxygen by boron or nitrogen. The
formation energy calculation reveals that for both vacancies defeajedgand
armchair BNNTSs, the probability of the nitrogen vacancy case is higher than that
of the boron one. Also in the carbon doping process of BNNTSs, the substitution of
boron by carbon is more possible with respect to nitrogen by carbon. In the oxygen
doping substitution process, substitution of boron by oxygen is less favorable than
nitrogen by oxygen. For the higher-probability cases the spin-up and spin-down
band structures show different features. For the first and second casgsnthe s
band structure shows a n-type semiconductor, while the spin-down band struc-
ture illustrates a wide band gap semiconductor. But for the oxygen-doped BNNTs
case, the spin-up band structure shows a wide band gap semiconductor, while the
spin-down band structure illustrates a n-type semiconductor. All defectediBNN
have a 1.Qus total magnetic moment.

Like BNNTs, GaNNTs, another wide band gap nanostructures, are of interest.
Structure and electronic properties of GaN nanotubes (GaNNTs) were studied in
our work. The optimized structures (bond-lengths and angles between them) of
zigzag GaNNTs (n, 0) and armchair GaNNTs (n, nx(# < 11) were calculated
by full optimization. The difference between nitrogen ring diameter and gallium
ring diameter (buckling distance) and semiconducting energy gap in term of di-
ameter for zigzag and armchair GaNNTs have also been calculated. Wgesbser
that buckling distance decreases by increasing nanotube diameter. Furthermore,
we have examined the effects of nitrogen and gallium vacancies on struntlire a
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electronic properties of zigzag GaNNT (5, 0) using spin dependent density func-
tional theory. By calculating the formation energy, we determined that Bn@c

in GaNNT (5, 0) is more favorable than Ga vacancy. The nitrogen vacancy in
zigzag GaNNT induces a 1)y magnetization and makes a polarized structure.
We realized that in polarized GaNNT a flat band near the Fermi energyg &plit
occupied spin up and unoccupied spin down levels.

Finally, the electronic properties of DWCNTs were investigated. The DWC-
NTs were separated into four categories wherein the innerouter nanotubes are
metalmetal, metalsemiconductor, semiconductormetal and semicondugtansem
ductor single-wall nanotubes. The band structure of DWCNTS, the local density
of states of the inner and outer nanotubes, and the total density of states were
calculated. We obtained that for the metalmetal DWCNTSs, the inner and outer
nanotubes remain metallic for different distances between the walls fanithe
metalsemiconductor DWCNTSs, decreasing the distance between the wadisdea
a phase transition in which both nanotubes become metallic. In the case of semi-
conductormetal DWCNTS, it is found that at some distance the inner wall becomes
metallic, while the outer wall becomes a semiconductor, and if the distanee is
creased, both walls become metallic. Finally, in the semiconductorsathictor
DWCNTSs, if the two walls are far from each other, then the whole DWCNT and
both walls remain semiconducting. By decreasing the wall distance, finstrtbe
and then the outer, nanotube becomes metallic.
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1.1 Introduction

Since carbon nanotubes discovery in 1991, nanotubes have generated huge activity
In most areas of science and engineering due to their unprecedented physical and
chemical properties. No previous material has displayed the combination of su-
perlative mechanical, thermal and electronic properties attributdteta. These
properties make nanotubes ideal, not only for a wide range of applicationsl but
as a test bed for fundamental science. The diverse fields, where in nanotubes
are intensely studied and considered to have a huge potential application in all
sorts of nanoscale devices, nanostructured materials or instrumentationg-contai
ing nanoscale components, include computational and experimental nanoscience,
theoretical and applied nanotechnology and molecular engineering, theoretical,
computational and experimental condensed matter physics and chemistry, and
many other fields.

The physics of nanotubes is connected with the exciting fields of computational
nano-science, computational nano-technology and computational condensed mat-
ter physics. The bases of these fields are numerical modeling and computer-based
simulation, to compute the physical properties of nano structures, and nano-scale
processes. These new fields of research allows us to exercise a conopketd c
over the structure and functioning of physical matter at the atomistic andcmole
ular scales. Computational nano-scale modelling offers an invaluable tobigfor t
design, fabrication, and quality control of devices and components, and helps clar-
ify the energetics and dynamics of the atoms participating in such structuies a
the conditions for the final stability of such structures [2].

Computational modeling of properties of nanotubes is based either on the use
of methods rooted in the many-body theories of quantum mechanics, such as the
density functional theory (DFT) of atoms and molecules, or on the use of methods



Figure 1.1: High-resolution transmission electron micopsy pictures of a multiwall carbon nan-
otube (left) and a bundle of single-wall nanotubes(rightjstrating two different possible geome-
tries for nanotubes.

rooted in advanced classical statistical mechanics, such as theutaolggnamics

(MD) simulation method. The quantum-mechanical approach allows f@ban
Initio, or first principles, study of nanoscale systems composed of several tens to,
at most, several hundreds atoms, with current computational platforms. To be
more familiar with different computational techniques in nanoscience, one of the
best reference is Ref. [3].

1.2 Carbon Nanotubes

1.2.1 Structure of carbon nanotubes

Carbon nanotubes were discovered and first characterized in 1991 by ligma fr

NEC laboratories (Japan) [4]. The first nanotubes discovered were made of severa

concentric cylindrical-like shells regularly spaced by an amount of ahdét&s

in conventional graphite materials (Fig. 1.2.1, left). These multiwall nanstube

(MWNTSs) were first synthesized with diameters ranging from a few nanometer

to several hundred nanometers for the inner and outer shells, respectively.
Shortly after the discovery of multiwall carbon nanotubes, single-wall carbon



Figure 1.2: Graphene honeycomb network with lattice vesagranda,. The chiral vector, =
5a; + 3ap represents a possible wrapping of the two-dimensionalhgna@ sheet into a tubular
form. The direction perpendicular ©y, is the tube axis. The chiral angleis defined by theCy,
vector and they zigzag direction of the graphene lattice. In the presentngte, a (5,3) nanotube
is under construction and the resulting tube is illustratedhe right.

nanotubes (SWNTSs) were synthesized in abundance using arc-discharge methods
with transition-metal catalysts [5, 6]. A carbon naotube made of a single graphite
layer (the graphene sheet) rolled up into a hollow cylinder is called a sindle-wa
nanotube. These tubes have quite small and uniform diameter, on the order of
1nm= 10"°m. Because the microscopic structure of SWNTSs is closely related
to that of graphene, the tubes are usually labeled in terms of the graphene lattice
vectors. As illustrated in Fig. 1.2.1 a single-wall carbon nanotube is gemaitr
obtained by rolling up a single graphene strip [7]. Its structure can be specified or
indexed by its circumferential vecto€f), as defined by the chiral vectohl in
Fig. 1.2.1) which connects two crystallographically equivalent sitesndA’) on
a graphene sheet. In this way, a SWNT’s geometry is completely specified by a
pair of integergn, m) denoting the relative positioBy, = na; + may of the pair of
atoms on a graphene strip which, when rolled onto each other, form aauaed
ap are unit vectors of the hexagonal honeycomb lattice).

This chiral vectolCy, defines the circumference of the tube. The diameatef
the nanotube can thus be estimated from



Figure 1.3: Atomic structures of (12,0) zigzag, (6,6) araighand (6,4) chiral nanotubes.

d = [Cp|/TT= %\/n2+nm+mz, (1.1)

wherea is the lattice constant of the honeycomb netwarks /3 x acc (acc ~
1.42A, the C-C bond length). The chiral vect8, uniquely defines a particular
(n,m) tube, as well as its chiral angde which is the angle betwee@;, anda;
(zigzag direction of the graphene sheet). The chiral aBgien be calculated as:

cod — Ch-ar 2n+m
IChllaa]  2v/n2+nm+n?
The value off is in the range & |6] < 30°, because of the hexagonal sym-

(1.2)

metry of the graphene lattice. This chiral an@l@lso denotes the tilt angle of
the hexagonal with respect to the direction of the nanotube axis. Nanotubes of
type (n,0)(8 = 0°) are called zigzag tubes, because they exhibit a zigzag pattern
along the circumference. Such tubes display carbon-carbon bonds parallel to the
nanotube axis. Nanotubes of the tyen)(6 = 30°) are called armchair tubes,
because they exhibit an armchair pattern along the circumference. Such wibes di
play carbon-carbon bonds perpendicular to the nanotube axis. Both zigzag and
armchair nanotubes are chiral tubes, in contrast with gefieral# n = 0) chiral
tubes (1.2.1).

The geometry of the graphene lattice and the chiral vector determine not only
the diameter of the tube, but also the unit cell and its number of carbon atoms. The
smallest graphene lattice vectorperpendicular taCy, defines the translational



