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Abstract

The presence of defects such as impurities and structural defects (vacancies and

Stone-Wale defects) particularly affect the electronic properties of nanotubes. Con-

sidering various potential applications of nanotubes (e.g. electrical circuits, gas

sensors and transistors), we decided to investigate the electronic properties of pure

and defected nanotubes (NTs). To this end,ab initio calculations usually are the

best, specially density functional theory (DFT) based methods. In this regard,var-

ious kinds of NTs such as Single-walled (SW) and double-walled (DW) carbon

nanotubes (CNT), boron nitride nanotubes (BNNT) and gallium nitride nanotubes

(GaNNT) were analyzed.

Boron nitride semiconducting zigzag SWCNT,BcbNcnC1−cb−cn, as a potential

candidate for making nanoelectronic devices was examined. In contrast to the pre-

vious DFT calculations, wherein just one boron and nitrogen doping configuration

have been considered, here for the average over all possible configurations, den-

sity of states (DOS) was calculated in terms of boron and nitrogen concentrations.

It was shown that semiconducting average gap,Eg, could be controlled by doping

nitrogen and boron. But in contrast to many-body techniques where gap edge in

the average DOS is sharp, the gap edge is smeared and impurity states appearin

the SWCNT semiconducting gap. For each boron and nitrogen concentrations,

also, exact magnitude of the energy gap,Eg, was calculated.

Furthermore, Density functional theory (DFT) calculations of the Stone-Wales

defected (S-WD) single-walled carbon nanotube (CNT) (10,0) were carried out to

understand the effect of S-WD orientations on the electronic properties of CNT.

We have considered the influence of supercell approximation on the defect for-

mation energy and the electronic properties of both circumferential and axial S-W
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defects in CNT. We found that the probability of S-WD orientation depends on

the defect concentration. Density of states of defected CNTs calculations have

been applied to indicate the effect of S-WD concentration on the semiconducting

energy gap. Utilizing local density of states investigation, also, we explained the

reasons of foreign atoms and molecules adsorption on S-WDs .

All BN nanotubes are semiconductor nanostructures regardless of diameter or

chirality, in contrast to the carbon nanotubes that have both metallic and semi-

conducting features. In this case, the electronic properties of defected BNNTs for

spin-up and spin-down electrons were explored. We have looked into two types of

defects, vacancy and substitution of carbon and oxygen by boron or nitrogen. The

formation energy calculation reveals that for both vacancies defected zigzag and

armchair BNNTs, the probability of the nitrogen vacancy case is higher than that

of the boron one. Also in the carbon doping process of BNNTs, the substitution of

boron by carbon is more possible with respect to nitrogen by carbon. In the oxygen

doping substitution process, substitution of boron by oxygen is less favorable than

nitrogen by oxygen. For the higher-probability cases the spin-up and spin-down

band structures show different features. For the first and second cases, the spin-up

band structure shows a n-type semiconductor, while the spin-down band struc-

ture illustrates a wide band gap semiconductor. But for the oxygen-doped BNNTs

case, the spin-up band structure shows a wide band gap semiconductor, while the

spin-down band structure illustrates a n-type semiconductor. All defected BNNTs

have a 1.0µB total magnetic moment.

Like BNNTs, GaNNTs, another wide band gap nanostructures, are of interest.

Structure and electronic properties of GaN nanotubes (GaNNTs) were studied in

our work. The optimized structures (bond-lengths and angles between them) of

zigzag GaNNTs (n, 0) and armchair GaNNTs (n, n) (4< n < 11) were calculated

by full optimization. The difference between nitrogen ring diameter and gallium

ring diameter (buckling distance) and semiconducting energy gap in term of di-

ameter for zigzag and armchair GaNNTs have also been calculated. We observed

that buckling distance decreases by increasing nanotube diameter. Furthermore,

we have examined the effects of nitrogen and gallium vacancies on structure and
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electronic properties of zigzag GaNNT (5, 0) using spin dependent density func-

tional theory. By calculating the formation energy, we determined that N vacancy

in GaNNT (5, 0) is more favorable than Ga vacancy. The nitrogen vacancy in

zigzag GaNNT induces a 1.0µB magnetization and makes a polarized structure.

We realized that in polarized GaNNT a flat band near the Fermi energy splits to

occupied spin up and unoccupied spin down levels.

Finally, the electronic properties of DWCNTs were investigated. The DWC-

NTs were separated into four categories wherein the innerouter nanotubes are

metalmetal, metalsemiconductor, semiconductormetal and semiconductorsemicon-

ductor single-wall nanotubes. The band structure of DWCNTs, the local density

of states of the inner and outer nanotubes, and the total density of states were

calculated. We obtained that for the metalmetal DWCNTs, the inner and outer

nanotubes remain metallic for different distances between the walls, while for the

metalsemiconductor DWCNTs, decreasing the distance between the walls leads to

a phase transition in which both nanotubes become metallic. In the case of semi-

conductormetal DWCNTs, it is found that at some distance the inner wall becomes

metallic, while the outer wall becomes a semiconductor, and if the distance isde-

creased, both walls become metallic. Finally, in the semiconductorsemiconductor

DWCNTs, if the two walls are far from each other, then the whole DWCNT and

both walls remain semiconducting. By decreasing the wall distance, first theinner,

and then the outer, nanotube becomes metallic.
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Chapter 1

Introduction to Nanostructures
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1.1 Introduction

Since carbon nanotubes discovery in 1991, nanotubes have generated huge activity

in most areas of science and engineering due to their unprecedented physical and

chemical properties. No previous material has displayed the combination of su-

perlative mechanical, thermal and electronic properties attributed tothem. These

properties make nanotubes ideal, not only for a wide range of applications1 but

as a test bed for fundamental science. The diverse fields, where in nanotubes

are intensely studied and considered to have a huge potential application in all

sorts of nanoscale devices, nanostructured materials or instrumentations contain-

ing nanoscale components, include computational and experimental nanoscience,

theoretical and applied nanotechnology and molecular engineering, theoretical,

computational and experimental condensed matter physics and chemistry, and

many other fields.

The physics of nanotubes is connected with the exciting fields of computational

nano-science, computational nano-technology and computational condensed mat-

ter physics. The bases of these fields are numerical modeling and computer-based

simulation, to compute the physical properties of nano structures, and nano-scale

processes. These new fields of research allows us to exercise a complete control

over the structure and functioning of physical matter at the atomistic and molec-

ular scales. Computational nano-scale modelling offers an invaluable tool for the

design, fabrication, and quality control of devices and components, and helps clar-

ify the energetics and dynamics of the atoms participating in such structures and

the conditions for the final stability of such structures [2].

Computational modeling of properties of nanotubes is based either on the use

of methods rooted in the many-body theories of quantum mechanics, such as the

density functional theory (DFT) of atoms and molecules, or on the use of methods
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Figure 1.1: High-resolution transmission electron microscopy pictures of a multiwall carbon nan-

otube (left) and a bundle of single-wall nanotubes(right),illustrating two different possible geome-

tries for nanotubes.

rooted in advanced classical statistical mechanics, such as the molecular dynamics

(MD) simulation method. The quantum-mechanical approach allows for anab

initio, or first principles, study of nanoscale systems composed of several tens to,

at most, several hundreds atoms, with current computational platforms. To be

more familiar with different computational techniques in nanoscience, one of the

best reference is Ref. [3].

1.2 Carbon Nanotubes

1.2.1 Structure of carbon nanotubes

Carbon nanotubes were discovered and first characterized in 1991 by Iijima from

NEC laboratories (Japan) [4]. The first nanotubes discovered were made of several

concentric cylindrical-like shells regularly spaced by an amount of about 3.4Å as

in conventional graphite materials (Fig. 1.2.1, left). These multiwall nanotubes

(MWNTs) were first synthesized with diameters ranging from a few nanometers

to several hundred nanometers for the inner and outer shells, respectively.

Shortly after the discovery of multiwall carbon nanotubes, single-wall carbon

3



Figure 1.2: Graphene honeycomb network with lattice vectors a1 anda2. The chiral vectorch =

5a1 + 3a2 represents a possible wrapping of the two-dimensional graphene sheet into a tubular

form. The direction perpendicular toCh is the tube axis. The chiral angleθ is defined by theCh

vector and thea1 zigzag direction of the graphene lattice. In the present example, a (5,3) nanotube

is under construction and the resulting tube is illustratedon the right.

nanotubes (SWNTs) were synthesized in abundance using arc-discharge methods

with transition-metal catalysts [5, 6]. A carbon naotube made of a single graphite

layer (the graphene sheet) rolled up into a hollow cylinder is called a single-wall

nanotube. These tubes have quite small and uniform diameter, on the order of

1nm= 10−9m. Because the microscopic structure of SWNTs is closely related

to that of graphene, the tubes are usually labeled in terms of the graphene lattice

vectors. As illustrated in Fig. 1.2.1 a single-wall carbon nanotube is geometrically

obtained by rolling up a single graphene strip [7]. Its structure can be specified or

indexed by its circumferential vector (Ch), as defined by the chiral vector (AA′ in

Fig. 1.2.1) which connects two crystallographically equivalent sites (A andA′) on

a graphene sheet. In this way, a SWNT’s geometry is completely specified by a

pair of integers(n,m) denoting the relative positionCh = na1+ma2 of the pair of

atoms on a graphene strip which, when rolled onto each other, form a tube (a1 and

a2 are unit vectors of the hexagonal honeycomb lattice).

This chiral vectorCh defines the circumference of the tube. The diameterdt of

the nanotube can thus be estimated from
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Figure 1.3: Atomic structures of (12,0) zigzag, (6,6) armchair, and (6,4) chiral nanotubes.

dt = |Ch|/π =
a
π

√

n2+nm+m2, (1.1)

wherea is the lattice constant of the honeycomb network:a =
√

3×acc (acc≃
1.42Å, the C-C bond length). The chiral vectorCh uniquely defines a particular

(n,m) tube, as well as its chiral angleθ, which is the angle betweenCh anda1

(zigzag direction of the graphene sheet). The chiral angleθ can be calculated as:

cosθ =
Ch ·a1

|Ch||a1|
=

2n+m

2
√

n2+nm+m2
. (1.2)

The value ofθ is in the range 0≤ |θ| ≤ 30◦, because of the hexagonal sym-

metry of the graphene lattice. This chiral angleθ also denotes the tilt angle of

the hexagonal with respect to the direction of the nanotube axis. Nanotubes of

type (n,0)(θ = 0◦) are called zigzag tubes, because they exhibit a zigzag pattern

along the circumference. Such tubes display carbon-carbon bonds parallel to the

nanotube axis. Nanotubes of the type(n,n)(θ = 30◦) are called armchair tubes,

because they exhibit an armchair pattern along the circumference. Such tubes dis-

play carbon-carbon bonds perpendicular to the nanotube axis. Both zigzag and

armchair nanotubes are chiral tubes, in contrast with general(n.m 6= n 6= 0) chiral

tubes (1.2.1).

The geometry of the graphene lattice and the chiral vector determine not only

the diameter of the tube, but also the unit cell and its number of carbon atoms. The

smallest graphene lattice vectorT perpendicular toCh defines the translational
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