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Symbols

Symbols

A Vector potential

B Magnetic flux density

d Field dampening factor
f Frequency

H Magnetic field strength
i Current

J Current density

L Self inductance

L, Magnetising inductance
L, Leakage inductance

n Speed

)% Pole pairs

u Voltge

R Resistance

S Slip

0 Angle of phase shift

() Order number

v Flux linkage

w angular velocity
Abbreviation
BLDC Brushless direct current
DC Direct current
EC Electrically commutated
IPM Intrior mounted permanent magnet
SPM Surface mounted permanent magnet
AC Alternative current

RM Rotating machine
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Abstract

Topic of this thesis:
Implementation of a parameter identification method for transient modeling of EC

motors using the software opera

The Finite Element software opera is used by a motor manufacturer to calculate the
stationary behavior of EC motors. Several scripts are already implemented for this task.
Transient behavior, however, is efficiently analyzed by analytical approaches better
than by FEM. Nevertheless, the motor parameters required for the analytical model

must be identified via FEM.

In this thesis, a parameter identification method for EC motors shall be implemented. In
this method, the rotor is excited by an alternating harmonic field, and its harmonic
response 1s determined. To achieve this goal, an existing script file for calculation of EC

motors in opera has to be adapted to calculate the rotor’s equivalent circuit parameters.
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1 Introduction

1.1 Motivation and objectives

Brushless direct current motors or BLDC motors are part of the electrically commutated
(EC) motors. According to its name, this motor works with DC power however there is
not any direct electrical connection contact between electrical parts of the stator and the
rotor. This leads to having advantages of both DC and induction motors together. Some

of them are listed below:

1) Ease of speed control
2) High dynamic response
3) Working at high-speed uses
4) Noiseless operation
5) Long life
6) High efficiency (because of lower loses)
7) Notable torque to size ratio
Technological progress made the BLDC motor production process easier and cheaper.

Above reasons increase using of BLDC motors in industries rapidly [2], [3].

This increasing tendency to use of BLDC motors induces the requirement of accurate
electrical equivalent model for exact behavior analysis. Eddy currents will occur in the
conducting regions of the rotor. These effects happening in steady-state condition due to
spatial harmonic fields of the winding are neglected in most conventional models, even
though in some occasion like stators consist of tooth-wound coils cause a generally
undesired and different spatial harmonics that increases rotor losses and has to be

considered.[4]

An enhanced model involving the eddy current losses is used to identify the parameters

of motor, which is presented in the next chapter.
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2 Basics

BLDC motors can be categorized as synchronous motors. This means that there is no
slip like the one exists in induction motors here, and the rotor rotates at the speed of the

rotating magnetic field generated by the stator winding.

Figure 2.1: A BLDC schema [1]
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2.1 BLDC fundamentals

A BLDC motor consists of three main sections:
1. Stator
I1. Rotor

III.  Electronic part including hall sensors

2.1.1 Stator

Most conventional BLDC motors have three phases winding in the stator, but this is not
always the case. According to required performance, the phase numbers can be
increased or decreased. The stator of a BLDC motor basically is the same as that is
used in the induction motors, but due to technical requirements the windings are
distributed in different ways in the slots. Some different kinds of winding schemes are

illustrated in Figure 2.2.

(a)
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(c)

Figure 2.2: Winding distributions for the 12-slot/10-pole motors. (a) All teeth wound. (b)

Alternate teeth wound. (c) Alternate teeth wound on wider teeth.[5]

Stator is formed normally from stacked steel laminations [5]. It is important to have a

uniform torque during motor application and this is achieved by matching the armature
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linkage fluxes, the current waveforms and the winding design [2]. The number of stator
slots 1s chosen depending on the rotor poles, phase number, and the winding
configuration. In general, a fractional slots/pole design is preferred to minimize cogging

torque [6].

2.1.2 Rotor

Main distinction between EC motors and the other types of motors is using of
permanent magnet in their rotor. Brushless permanent magnet (BLPM) motors can be
classified in two major groups: motors with the PM mounted on the surface of the rotor
which is known as SPM and the second category is motors with PM placed in the
interior of the rotor body which is called IPM. The production procedure of first group
is gluing arc magnets and securing them with special tape on the outer surface of a rotor
core. This is cost effective when large ferrite magnets or bonded magnet rings are used,

however, it presents challenges for the sintered NdFeB designs.

Figure 2.3: Cross-section of a 4-pole brushless motor (left) surface mounted permanent
magnets (right) interior PM motor. Magnets of North and South polarity are shown in red and
blue [7].
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On the other hand due to rectangular shape of permanent magnets that is used in IPMs

the manufacturing process will be simplified and cost effective. There are a large

variety of designs for EC rotors; shown in Figure 2.3 are the most common types [7].

2.1.3 Electronic parts

As in these motors commutation is controlled electronically, they are named as
Electronically Commutated (EC) motors. The position of rotor has to be identified
indirectly because there is no direct electrical connection between rotating part and
armature as in conventional DC motors. Mechanical contact is not used in the BLDC

because it will reduce the efficiency and longevity.

Different sensors can be applied to detect the exact rotor position in BLDC motor. Also

some sensor-less methods are employed to control this motor.

Hall element Amplifier

/ [4] 0
H1 e
1] = |[8] .r ‘
§ % [11] 4
) . S |[6] y ﬂ[lZ] !
L[| AH2 &
= 2] g |U7] :_W_C %
§ [8] —‘W"“K otor
s —Wv—C s.; Mot
H3 O 1wy >
3] M—'CL X
7 P

(®)

Figure 2.4: (a) Practical circuit for a three-phase bipolar-driven motor (b) arrangement of Hall

elements [8]

Figure 1.2 illustrates the circuit of a typical three-phase brushless DC motor with the

position of hall sensors, which are used for identifying rotor angle.
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2.1.4 Motor characteristic

The air-gap flux-density waveform of BLDC is essentially a square wave, but
fringing causes the corners to be somewhat rounded. As the rotor rotates, the
waveform of the voltage induced in each phase with respect to time is an exact
replica of the air-gap flux-density waveform with respect to rotor position. The
fringing leads to a trapezoidal style to EMF that discriminate between BLDC and
PMSM motor that have a sinusoidal EMF. In a three phase BLDC the EMF that
induced in each phase are the same in the shape but have 120° electrical shift in

phase angle. By exciting the stator phases by a rectangular current in the correct time an

almost constant torque is achievable. [6].
The amplitude of the phase back-EMF is relative to the rotor speed, and is given by:

U=kow, (2.1)

That w,, is mechanical speed, ¢ is the permanent magnet flux and & is a constant factor

that is relative to phase turns.
The instantaneous power in every 120° interval, is the sum of the contributions from

two phases in series, which can be formulated by:

P =0T =2UI (2.2)

Where Te is the output torque and / is the amplitude of the phase current. The equation

for the output torque can be extracted from equation (2.1) and (2.2)
T, =2k¢l =k, (2.3)

Where k¢ is the torque constant. From equation (2.1) and (2.3) the resemblance between

BLDC motor and conventional DC motors (brushed) can be observed easily [6].
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1 Electrical Cycle

1 Electrical Cycle

Back
EMF

Output
Torque
Phase
Current

1 Mechanical Revolution

Sequence
Number

Figure 2.5: Hall sensor output, Back-EMF, Output torque and current of a typical BLDC [3]
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2.1.5 Theory of application

In each commutation sequence, one of the stator windings is excited with positive
power (current enters into winding), the second one has negative power and the third
one has no power. The generated magnetic field interacts with the rotor permanent
magnets, and rotor starts rotating. Shifting in position of stator magnetic field keeps
motor rotating, and this is the reason that energizing sequence of stator windings is
dependent upon the rotor position. What is known as “Six-step Commutation”, is a

method that defines sequences of energizing.

()] )

3) 4)

RS /\

) )

Figure 2.6: The windings energizing modes during six-step commutation sequences[3]

In this method the controller in BLDC finds sequence number with respect to the
predicted or sensed rotor position, and switches DC power between the stator windings,

according to the template that is depicted in the Figure 2.6 [6].
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2.2 Park transformation

The direction and magnitude of the magnetic field is equal to the sum of the current
vectors of different phases. Thus by measuring the currents through each phase the total

current vector can be calculated

A ‘Clarke transformation’ is used to convert a 3-phase system into a 2-phase coordinate
system. This frame is called static reference frame. The quadrature-phase components

can be calculated using only two phases of the 3-phase system.

— 1 1 -
1 —= =
2 2 I
VERRVEY | e
Iaﬁy =Tlawe =|0 7 —7 Iy (2.4)
I,
1 1 1
2 2

Alternatively, the scaling of the transformation can be chosen to , /% instead of 2/3 n

a balanced system I, +1,+1 =0, and thus 1, =0 and two of the phase currents suffice

to calculate the o and B components. In this case the transform simplifies to

lop = [i 2] [;Z] (2.5)

Based on [9], This leads to a non power-invariant transformation:
I,=1I, (2.6)

_,+21,)

Iy N (2.7)
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Figure 2.7: Clarke’s current vectors in abc system [10]

The current vector in the static reference frame (o, B) of the windings can be
transformed into the dynamic frame (d, q) of the rotating permanent magnet to create a

speed invariant system

A Park transformation is used to transform the static reference frame to a dynamic

reference frame. In a zero speed situation

I, =1gsinoc+1,coso (2.8)

I,=1;cosa—1,sinc (2.9)
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Figure 2.8: Park’s current vectors in Clarke’s system [10]

According to eq. (2.8) and (2.9), in order to find /, and I the first step is calculating

I,,1; and o . I, and ], can be calculated based on eq.(2.6) and (2.7). But « is still

unknown. Assume that the aim is finding /, when rotor is oriented on d -axis.

Therefore it is necessary to know direction of d -axis. When rotor is oriented on d , I,

is zero. This means:

By substituting eq. (2.8) and (2.9) into eq. (2.10):

LI +21,

V31

a

o=tg

Finally according to eq. (2.6) to (2.9) and (2.11):

(2.10)

(2.11)



