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Chemoinformatics (1; 2) is an emerging science that concerns the mixing of chemical 

information resources to transform data into information and information into knowledge. 

It is a branch of theoretical chemistry based on its molecular model, and which uses its 

own basic concepts, learning approaches and areas of application. 

  

1.1. General introduction 

A major task of chemists is to make compounds with desired properties. The 

society at large is not interested in beautiful chemical structures but in the properties that 

these structures carry with them. Chemical industry can only sell properties but they do so 

by conveying these properties through chemical structures. Thus, the first fundamental task 

in chemistry is to make inferences on which structure might have the desired property. 

This is the domain of establishing structure–property or structure–activity relationships 

(SPR or SAR) or even finding such relationships in a quantitative manner (QSPR or 

QSAR). Once we have an idea which structure we should make to obtain the desired 

property we have to make a plan on how to synthesize this compound, which reaction or 

sequence of reactions to perform to make this structure from available starting materials. 

This is the domain of synthesis design, and the planning of chemical reactions. 

Once a reaction has been performed, we have to establish whether the reaction took 

the desired course, whether we obtained the desired structure. For, our knowledge on 

chemical reactions is still too cursory; the factors influencing the course of chemical 

reactions are too many that we are not always able to predict which products will be 

obtained, whether side reactions will be observed, or whether the reaction might take a 

completely different course than expected. Thus, we have to establish the structure of the 

reaction product. A similar problem is given, when the degradation of a xenobiotic in the 

environment or in a living organism has to be established. This is the domain of structure 

elucidation, that, in most parts, utilizes information from a battery of spectra (infrared, 

NMR, and mass spectra). These fundamental tasks of a chemist are summarized in Figure 

(1-1). All these tasks are, in general, too complicated to be solved from first principles. 

They require a lot of knowledge, knowledge that has to be derived by learning from data 

and from observations made on experiments. It has to be realized that there are two ways 
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of learning, deductive and inductive learning. In deductive learning a theory is used to 

make inferences, deductions. In chemistry this is usually achieved by calculations such as 

quantum mechanical or molecular mechanics calculations. Such calculations provide data 

that can assist in solving a problem. 

Inductive learning, on the other hand, learns from observations, from data. These 

data are put into context to obtain information. Information can then be generalized to 

obtain knowledge Figure (1-2). To give an example: the measurement of a certain 

biological activity is, by itself, not very useful. Only when we can associate such a 

biological activity with a chemical structure do we obtain information. Many such pieces 

of information of chemical structures and their associated biological activities can then be 

used to build a model for the relationships between chemical structure and biological 

activity. Such a model comprises knowledge that can be used to make predictions on the 

biological activity of new chemical structures. 

 

 
Figure(1-1) The fundamental tasks of a chemist: property prediction, synthesis design, reaction 

prediction, and structure elucidation. 

 

Inductive learning has a long history in chemistry. In fact, it has been the most 

important method to further our understanding of chemistry since more than 100 years. In 

recent decades, methods have been developed that allow inductive learning to be put on a 

more formal and rigorous basis by mathematical methods. Different names have been 

attributed to this area such as machine learning, data mining, pattern recognition, 

chemometrics, or neural networks. All these methods are considered to be part of 

chemoinformatics. 
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There are other reasons that make chemoinformatics indispensable: the amount of 

information available in chemistry is enormous. Presently, more than 40 million different 

compounds are known; all have a series of properties, physical, chemical, or biological, all 

can be made in many different ways, made by a wide range of reactions, all can be 

characterized by a host of spectra. And each year more than a million new compounds are 

discovered or synthesized, each year about 800.000 new articles are published that 

somehow deal with aspects of chemistry. All this just aggravates the flood of information. 

This immense amount of information can only be processed by electronic means, by the 

power of the computer. This is again where chemoinformatics comes in! Thus, quite early 

on, in the sixties, databases for storing information on chemical compounds were built in 

order to ensure that the information accumulated by chemists can also in the future be 

made accessible to the scientific community. 

 
Figure(1-2) Deductive and inductive learning: from data through information to knowledge. 

 

Large as this flood of information is, there are also many areas where not enough 

information is available. Although 40 million compounds are known, we have 

experimental data on their 3D structure only for 250.000 compounds. And, the largest 

database on infrared spectra comprises only 220.000 spectra. Thus, we have experimental 

3D structures and infrared spectra only for 0.5% of all known compounds. The question is 

then; can we develop methods to predict the 3D structure or the infrared spectra for the 

other 99.5% of compounds? Can we learn from the known 0.5% of the 3D structures 

enough about the construction principles of chemical structures to predict the 3D structures 

for the other 99.5% of compounds? Can we learn from the 0.5% infrared spectra stored in 

databases enough about the relationships between structure and infrared spectra to predict 
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IR spectra for the other 99.5% of compounds? This is again where chemoinformatics has 

to come in! 

Thus, we see that chemistry provides a host of problems to be solved by novel 

methods: storage and retrieval of chemical compounds and reactions, structure–property 

relationships, synthesis design, reaction prediction, spectra simulation, structure 

elucidation. This wide variety of applications has matured to a new field: 

Chemoinformatics, the application of informatics methods to the solution of 

chemical problems (3). 

1.2. Applications of chemoinformatics 

While not the most well-known part of chemistry, it plays an important part in the 

delivery of in silico techniques. Cheminformatics was originally defined by Brown in 1998 

(4). However; the subject has been in existence far longer. Markush structures were first 

used in patents from 1924 for describing multiple substituents. Wiswesser line notation, the 

first line notation to describe complex molecules was created in 1949 (5). The American 

Chemical Society created the Journal of Chemical Documentation in 1961 which has now 

morphed into the Journal of Chemical Information and Modeling. It is no longer the only 

journal dedicated to cheminformatics. 

Pivotal to cheminformatics development has been the growth and capabilities of the 

computer, core to any cheminformatics technique. Cheminformatics consists of several 

topics, which will be discussed briefly: chemical data storage, substructure searching, 

similarity searching, clustering, docking and QSAR. Most techniques are available as both 

2D and 3D methods. 2D methods are primarily concerned with the topology of molecules. 

Conformers and stereochemistry are typically ignored un-like with 3D methods. 3D 

methods are typically more complex in order to model the extra data. Studies have found 

2D methods can sometimes outperform 3D counterparts (6). This may sound 

counterintuitive but simpler methodologies can yield better results with less computational 

effort. 

 

1.3. Chemometrics 

It was recognized early on in the late sixties that the diversity and complexity of 

chemical data need powerful and diversified data analysis methods. Thus, the field of 

chemometrics was soon established and is flourishing since, being presented in journals of 

their own such as Journal of Chemometrics, Journal of Chemometrics and Intelligent 
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Laboratory Systems, and Quantitative Structure Activity Relationships. Multifaceted as 

these various problem areas are, from structure representation to chemometrics studies, 

they have nevertheless drawn success from similar methods, have benefited from many 

connections to such an extent that they have merged to a scientific discipline of its own: 

chemoinformatics. 

 

1.3.1. Development of chemometrics 

      Chemometrics has developed over the past decade from a fairly theoretical 

subject to one that is applied in a wide range of sciences. The word chemometrics was 

coined in the 1970s, and the early development went hand in hand with the development of 

scientific computing, and primarily involved using multivariate statistical methods for the 

analysis of analytical chemistry data.  

 

1.4. Quantitative structure activity/property relationships 

Returning to the fundamental questions of a chemist mentioned in the introduction 

we want to further delve into the relationships between chemical structure and a desired 

property. This field, quantitative structure–property relationships (QSPR), or quantitative 

structure–activity relationships (QSAR) if the property of interest is a biological activity, is 

the prototypal area of application of chemoinformatics methods as it emphasizes certain 

problems that are also important in other domains of chemoinformatics. 

It has already been emphasized that many properties of a chemical compound, such 

as its biological activity, cannot be calculated from first principles. This is where inductive 

learning methods have to come in. Firstly, the chemical structure of compound has to be 

represented by a set of structure descriptors. Then, a series of compounds and their 

associated properties have to be compiled and submitted as a training set to an inductive 

 
Figure(1-3) The indirect way for predicting properties of chemical compounds. 
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learning method to build a model for the relationships between chemical structure and its 

property Figure (1-3). This process will be analyzed in some detail as it involves methods 

that are of importance in other areas of chemoinformatics. 

 

1.5. 2D-QSAR methodology 

1.5.1. Subset selection in QSAR/QSPR data  

Data splitting performed at the initial stage of the QSAR/QSPR development is 

particularly significant, as it determines, which data are utilized to train (fit) the model, and 

which are employed for its external validation. The quest to find the most appropriate 

methodology for selecting training and test set compounds has led to active investigations 

in this area. A vast range of recently published contributions focused on the importance of 

data splitting, for example (7; 8; 9), highlight two major conditions that should be met: (i) 

representivity of both training and test sets and (ii) sufficient diversity of the training set. 

However, no model, even when properly validated and yielding ‘‘good’’ values of 

validation statistics, is able to provide reliable predictions for the entire universe of 

chemicals. The model usually works much better for the compounds falling inside its 

applicability domain (typically defined by structural/ mechanistic similarity) and the range 

of activity/property values within the training set. Hence, in the ideal modelling case, 

chemical structures and the predicted response values for training and test sets should be 

possibly similar—the representative objects in the training set should be close to the 

objects in the test set and vice versa (10). In other words, the training and test sets should 

scatter over the whole range of the considered space, defined by the descriptors of 

molecular structure (X) and the response (y) values (11). 

In practice, several algorithms are employed to split the input data. The most 

common ones are based on the endpoint (y) values only (e.g. the repeated test set 

technique, random selection or activity sampling) (12; 13; 14), while more sophisticated 

techniques take into account also the values of molecular descriptors (X) (e.g. maximum 

dissimilarity method, the Kennard–Stone algorithm, the duplex algorithm, Kohonen’s self-

organising maps, D-optimal design or sphere exclusion) (15; 16; 17). Endpoint-value-

based methods of data splitting generate even distributions of compounds along with the 

endpoint values in both created sets. However, there is a danger that the application of such 

algorithms may be associated with significant loss of information, as the resulting training 

sets do not necessarily represent the entire descriptor space of the input data. 

Consequently, the test set compounds may be distant from those included in the training 
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set. In contrast, algorithms in which X values contribute to the data splitting are more 

likely to generate representative sets consisting of compounds evenly distributed within the 

chemical space ranged by values of both y vector and X matrix. Such an approach should 

ensure the closeness between test and training set compounds (18). Although opinions 

have been expressed in the academic literature, no firm and practical recommendations 

related to dataset splitting have been available so far in any of the official guidelines for 

QSAR/ QSPR modelers. 

 

1.5.1.1. Most descriptive compound (MDC) method  

The generation of representative subsets of compounds from chemical databases is 

an important problem in pharmaceutical research. Subset selection may be necessary to 

select subsets from smaller databases, for example as training sets for QSAR studies; the 

subsets are both diverse and representative of the parent database. The “Most Descriptive 

Compound” (MDC) method has similarities to cluster analysis but avoids many of its 

ambiguities. 

The aim of this algorithm is to select a subset of compounds which most effectively 

represents the compounds in the original population in terms of the chosen parameters. 

From a table of the compounds and the autoscaled values of the chosen parameters the 

following procedure is performed: 

a) Calculate the Euclidean distance of compound 1 from all other compounds. 

b) Rank the calculated distances from compound 1 to all other compounds and take the 

reciprocal of the rank. Store this in the information vector I. (e.g. the value of I, is 1 and the 

closest compound to 1 has I = 1/2, the second closest has I = 1/3 etc.). 

These values give a quantitative measure of the information we might expect to get 

about compound 1 by testing another compound. The advantage of using reciprocal ranks, 

rather than the distances, is that the transformation from distance to similarity and the 

associated, arbitrary, choice of a transformation function is unnecessary. 

c) Repeat stages a and b for all compounds in the data set and add the reciprocal ranks to I. 

This now contains a measure of the information we might hope to get on the entire data set 

by testing any given compound. 

d) Find the compound with the largest value in I. This is labeled the most descriptive 

compound (MDC) and is selected. It corresponds to the compound with the smallest 

overall distance to all the other compounds. 
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We next want to select the compound that gives us the greatest additional 

information on our set of compounds given that the MDC has already been selected. Thus 

we need a way of removing the contribution of the MDC from I. This is achieved by steps 

(e) and (f). 

e) Recalculate the distances of the MDC to all the other compounds and the reciprocal 

ranks as above. Subtract these reciprocal ranks from 1 and store in the rank vector R. 

f) Multiply values in I by the corresponding values in R. Store the result in I. 

Check that all numbers in the I exceed 1. If they do then go to step d and repeat on the new 

Information vector. Repeat until all values in the I are less than 1 (no more information to 

extract) or until the required number of compounds have been selected. This termination 

condition is arbitrary but has been found practically to be a reasonable one (19). 

 

1.5.2. Molecular descriptors 

Any computational analysis of chemicals requires a comparison between them. In 

the early days of QSAR, the common used characterization of molecules was by 

experimentally obtained descriptors. As these descriptors cannot always be obtained due to 

experimental difficulty or because one is dealing with virtual molecules, there was great 

interest in finding other ways to describe these molecules. Nowadays, chemists represent 

molecules by some form of understandable structural representation. The analysis of 

molecules is then based on an appropriate selection of features of the chemical - the so-

called descriptors - that can be derived from the molecular structure. In the following a 

brief overview is given of the available descriptors used in 2D-QSAR. Due to the vast 

number of different methodologies available, this overview is not meant to be a definite 

reference but rather it tries to give a broad outline of the different techniques and the 

mathematical principles they are based on. For a more in-depth discussion on the subject of 

descriptors the reader is referred to the "Handbook of Molecular Descriptors" by 

Todeschini and Consonni which includes an extensive bibliography of about 3000 

references (20). 

 Constitutional descriptors: 

Constitutional descriptors are widely used in QSAR analysis. The descriptor group 

uses the atomic or molecular properties and is therefore independent of the overall 

molecular connectivity. They encode the size of molecules and chemical properties. The 

group of descriptors includes a great variety of descriptors such as molecular mass or 

refractivity, element count, element quotient and many others. If one accepts experimental 
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properties as real descriptors, they are often included among these descriptors. These 

property-based descriptors include many kinds of empirical parameters, e.g. Hammett 

constants as discussed earlier. 

Geometrical descriptors: 

These descriptors reflect features of the molecular geometry. Examples of such 

descriptors include distances between particular points on the molecular surface and 

distances between given chemical groups. The most widely used geometrical descriptors 

are molecular surface area and molecular volume. Molecular surface area is the area of the 

outer surface of the volume from which the solvent molecules are excluded due to the 

presence of the solute molecule in a solution. It is based on the van der Waals molecular 

surface - defined by the van der Waals radii of the atoms in the molecule - however, the 

van Der Waals molecular surface contains small gaps and crevices that are inaccessible to 

other atoms and molecules. The molecular surface area is defined by excluding these gaps 

and crevices. The Molecular Polar Surface area is defined as the sum of surface 

contributions of only the polar atoms (oxygens, nitrogens and attached hydrogens) in a 

molecule. The calculation of the polar surface area however is relatively time consuming, 

because of the necessity to create a reasonable 3D molecular geometry and to calculate the 

surface itself. In order to enable virtual bioavailability screening of very large collections 

of molecules, a new methodology to calculate the PSA from fragment contributions is used 

throughout the QSAR analysis. The method of choice is termed TPSA - topological PSA 

(21; 22). 

Topological descriptors: 

Topology deals with the type and the connection of atoms in the 2D space. They 

are evaluated using molecular graph theory which is based on the construction of graphs by 

replacing atoms with vertices and bonds with edges. A large class of descriptors relies 

solely on the molecular graph and therefore takes into account only the topology of the 

molecular graph and discards the chemical information available about the underlying 

compound. Popular topostructural 2D descriptors include the Wiener index (23), the 

Zagreb index (24), the Randic connectivity index (25) and the Balaban index (26). 

 

1.5.3. Model derivation and model validation 

A QSAR analysis starts with collecting experimental data and generating numerical 

descriptors of the molecular structures. Both of these datasets need to be transformed at the 

start of the statistical analysis, to obtain interpretable answers. This topic is covered in the 
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section Autoscaling. At this stage, the analysis has to cope with a huge set of descriptors. 

Therefore, the superfluous variables need to be eliminated and the most important 

descriptors selected. Both techniques are described in the section Variable Elimination and 

Selection. After these preparative steps, the actual statistical analysis starts. The available 

methods are described in the section Methods of Regression. 

 

1.5.3.1. Autoscaling 

Scaling of data values is important, because then each variable is treated equally. 

Descriptors with very small values or descriptors with very large values are all treated with 

equal emphasis. Autoscaling can be interpreted as the translation and the normalization of 

the descriptor coordinate axes. This can be achieved by mean centering in which the mean 

of a variable coincides with the origin, and a normalization that makes the length of the 

data vector equal to unity. The advantage of scaled descriptors is that the magnitude of 

their coefficients in the regression equation allows the comparison of the relative 

contribution of each independent variable in the prediction of the dependent variable. As 

the mean centering only affects the absolute values of the variable and leaves the relative 

positions unchanged it usually does not have any negative impact on the efficacy of the 

statistical analysis. Variance scaling is used to normalize each of the descriptors variables 

to unit variance which ensures that all variables have equal weight in the statistical 

analysis. However, in some cases the differences in the ranges of variables can act as 

intrinsic weight factors and the variance scaling that removes them, actually reduces the 

accuracy of the statistical model. 

 

1.5.3.2. Variable elimination and selection 

Due to the nature of QSAR analysis, it is common that there are more descriptors 

than there are samples. Besides, many descriptors are more or less co-linear, that in turn 

causes problems for many statistical analysis methods. There are numerous techniques of 

variable selection. In the context of PLS regression, a review can be found in (27). In the 

general domain of machine learning, the following taxonomy in three groups is commonly 

used (28): 

With filter methods, variable selection is done independently of the model that 

eventually makes use of them. Filter methods use the intrinsic characteristics of the whole 

data set in order to select some variables and/or eliminate others. This selection can be 

viewed as a pre-treatment of predictive variables. In the field of multivariate calibration, 
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different filter criteria are used such as the absolute value of correlation or covariance 

between predictors and response (29). The theory of information is also used for selecting 

the predictive variables that maximise the mutual information with the variable to be 

predicted. However this method is difficult to implement when multi-responses are 

involved. An application in chemomectrics is found in (30). The UVE method (31) allows 

variable elimination by comparing them with noisy artificial variables. 

Wrapper methods scan the space of possible selections and use the prediction 

model as a black box to test the relevancy of selections. This is often evaluated by means 

of a simple or cross-validation. Depending on the strategies to perform the scan, there exist 

different wrapper methods (32). These are in most cases stochastic optimization methods 

inspired by natural phenomena: Genetic algorithms (33) or simulated annealing (34). 

These methods are not repeatable due to their random nature. Moreover, their 

complex algorithms may pose a problem when the searching space is large and the 

relevancy of the selection is not easy to assess in the case of multiple responses. 

Embedded methods accomplish the variable selection during the calibration 

process. The subset of selected variables, optimising the training criterion, can be 

constructed by successive additions (forward), elimination (backward) or a combination of 

both approaches. Backward methods are not well adapted to the high multivariate cases 

because, at the beginning of the selection process, they take into account all the variables. 

Stepwise multiple linear regression (SMLR) (35) is one of the most popular examples of 

this kind of methods. 

Successive Projection Algorithm (36) is a forward selection method that minimises 

colinearity between predictors by means of successive projections on interlinked sub-

spaces. At each step, the selected variable is the one showing the maximum projection on 

the orthogonal sub-space generated by the already selected variables. SPA is a hybrid 

between filter and embedded methods.  

 

1.5.3.2.1 Genetic algorithm (GA) 

Genetic algorithms are search algorithms inspired by Charles DarwinPs principle of 

“the survival of the fittest”. GA’s have been used widely in the field of QSAR modeling, 

cheminformatics and chemometrics (37). The application of genetic algorithms in this 

work is focused on their use as efficient tools to search large dimensional spaces. More 

specifically, one application of GA’s in QSAR modeling is to search a descriptor space to 

find optimal subsets of descriptors that can be used to build predictive models. Figure (1-4) 
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dedicates a diagram of the generic genetic algorithm and this section describes the steps in 

detail. 

 
Figure(1-4) A diagram for describing the genetic algorithm 

 

As mentioned above, GA is based on the principles of evolution. As a result much 

of the terminology from the field of biological evolution has been adapted for use in the 

field of genetic algorithms. Thus we define an individual as consisting of a chromosome 

and an associated fitness value. When using a GA for descriptor selection, the chromosome 

is simply a subset of descriptors (of user specified length) chosen from the descriptor pool 

that is being searched. A population is defined as a collection of individuals. The first step 

of the GA is to initialize the population. This is achieved by randomly generating a user 

specified number (usually 40 to 50) of descriptor subsets of user specified size. Each 

descriptor subset is used to build a model (which can be a linear regression model or a 

ANN model). The root mean square error (RMSE) for each model is used to determine the 

fitness of the individual. The implementation used in this work does not use the raw RMSE 

value but instead uses a linearly scaled form. The actual form of the fitness function 

depends on the nature of the model to be developed. 

For linear models the fitness for the i th individual in the population is defined as 

௜ݏݏ݁݊ݐ݅ܨ ൌ ൤ 2 െ ோெௌா೔

ோெௌாೌೡ೒
൨

ିଵ

 ݅௧௛                                               (1.1) 

where RMSEi is the RMSE for the i th individual and RMSEavg is the average RMSE for the 

whole population. 



14 
 

The next step is to create a child population. First a mating list is created, which is 

of the same size as the current population. Those individuals with fitness greater than the 

population average (which from equation 1.1 is greater than 1.0) are automatically placed 

in the mating list. By definition, this will fill up half of the available slots. The remaining 

slots in the mating list are filled by using a roulette wheel selection procedure to select 

individuals from the current population. Once the mating list is created a child population 

is then generated by successively selecting two individuals from the mating list at random 

and applying genetic operations. The first operation is termed crossover, and involves the 

swapping of portions of the chromosomes of a pair of individuals. The GA literature 

describes a number of variations of the crossover operation (38). The current 

implementation restricts itself to the single point crossover. In this type of crossover a split 

point is chosen in the descriptor subset. 

Then the descriptors from one side of the split point in the two individuals are 

swapped to give rise to two new individuals. This operation is shown graphically in Figure 

1-5. The figure represents a crossover performed on two individuals having a chromosome 

(descriptor subset) of length 5. 

 
Figure(1-5) A schematic diagram of the single point crossover operation. The grids on the left 

represent the parents and the grids on the right represent the children formed after crossover.  The 

portions of the chromosomes to the left of the split point are swapped. 

 

The split point is chosen at the fourth descriptor and the descriptors on the left of 

the split point are swapped resulting in two new individuals. The goal of crossover is to 

generate new individuals that will have the good features of the parent individuals. That is, 

if two individuals have a high fitness this implies that certain parts of their chromosomes 

(i.e., certain descriptors) are responsible for their fitness. By combining a portion of the 

chromosomes of two fit individuals, we expect that the children will exhibit equal if not 

better fitness. 

The second genetic operation is termed mutation and is performed on a single child 
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individual. It should be noted that mutation is not performed on all individuals in a 

population but is carried out only 5% of the time, mirroring the low frequency of mutation 

in biological evolution. In a genetic algorithm the mutation operation is performed by 

randomly changing a part of the chromosome of an individual. That is, a random descriptor 

within an individual is replaced with a randomly chosen descriptor from the descriptor 

pool. This is shown schematically in Figure (1-6). The goal of the mutation operation is 

twofold. First, random mutations prevent the algorithm from getting stuck in a local 

minimum and second, mutations prevent the phenomenon of premature convergence. This 

occurs when the algorithm creates very similar (or even identical) individuals whose 

fitness is high, but not necessarily optimal. 

 
Figure (1-6) A schematic diagram of the mutation operation 

 

The mutation operation can also be viewed as a method to maintain diversity within 

a population, though this does not entirely solve the problem of premature convergence as 

noted by Goldberg (38). With the application of these two operations we end up with a 

second, child, population. The fitness of the individuals in this population is evaluated and 

the individuals ranked. The second generation population is then created by randomly 

selecting individuals from the top 50% of the previous population and the child population. 

Finally, if the best model in the child population is of lower fitness than the best model 

from the previous population, the best model from the previous population is kept in the 

second generation. With the formation of the second generation population, the whole 

process is repeated. This continues for a user specified number of cycles (usually 1000) 

and at the end the top ranked individuals (i.e., the top ranked descriptor subsets and 

associated RMSE values) are reported to the user. Genetic algorithms (GA) are a general 

methodology for searching a solution space in a manner analogue to the natural selection 

procedure in biological evolution. 

 

1.5.3.2.2. Stepwise regression method 

Groups of commonly used regression methods are proposed to evaluate only a 

small number of subsets by either adding or deleting variables one at a time according to a 
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specific criterion. The forward selection method adds variables to the model one at a time. 

The first variable included in the model is the one which has the highest correlation with 

the independent variable y. The variable that enters the model as the second variable is one 

which has the highest correlation with y, after y has been adjusted for the effect of the first 

variable. This process terminated when the last variable entering the model has 

insignificant regression coefficient or all the variables are included in the model.  

In contrast to forward selection, backward elimination begins with the full model 

and successively eliminates one at a time. The first variable deleted is the one with the 

smallest contribution to the reduction of predictive error sum of squares (PRESS).  

Assuming that there are more variables that are insignificant, the process operates 

by eliminating the next most insignificant variable. The process is terminated when all the 

variables are significant or all but one variable has been deleted. In stepwise procedure a 

variable that entered the model in the earlier stages of selection may be deleted at the later 

stages. The calculations made for inclusion and elimination of variables are the same as 

forward selection and backward procedures. That is, the stepwise method is essentially a 

forward selection procedure, but at each stages the possibility of deleting a variable, as in 

backward elimination, is considered. The number of variables retained in the model is 

based on the levels of significance assumed for inclusion and exclusion of variables from 

the model.  

One common problem in multiple regression analysis is multicollinearity of the 

input variables. The input variables may be as correlated with each other as they are with 

the response. If this is the case, the presence of one input variable in the model may mask 

the effect of another input. Stepwise regression used as a canned procedure is a dangerous 

tool because the resulting model may include different variables depending on the choice 

of starting model and inclusion strategy (39). 

 

1.5.3.3. Method of regression 

In Quantitative Structure-Activity relationships, molecular descriptors collected in 

the design matrix (X) are correlated with a response variable collected in the dependent 

column vector (y). The y values are assumed to be linearly dependent on the independent 

variables contained in the X matrix. The objective of the analysis usually is to increase the 

understanding of the biological system under investigation or to predict the response of 

objects not yet tested (e.g., predict the potency of a compound not yet synthesized). The 

conclusions drawn from a regression analysis are dependent on the assumptions on the 
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regression model. If it is assumed that the relationship is well represented by a model that 

is linear in the descriptors, a suitable model may be represented by 

࢟ ൌ ܾ଴ ൅ ܾଵ כ ଵࢄ ൅ ڮ ൅ ܾ௞ כ ௞ࢄ ൅ ݁                                                             (1.2) 

In equation 1.2 the b’s are unknown constants called regression coefficients and the 

objective of regression analysis is to estimate these constants. 

 

1.5.3.3.1. Multiple linear regressions (MLR) 

In order to establish a relationship between X and y in Figure (1-7), Multiple Linear 

Regression (MLR) (39) has until recently been the obvious method of choice. In MLR, it is 

assumed that X is of full rank and the xij are measured with negligible error. The algebraic 

MLR model is defined in Equation 1.2 and in matrix notation: 

࢟ ൌ ܾࢄ ൅ ݁                                                                                                    (1.3) 

where X = [x0|x1|…xJ], b
T = [b0,b1,…,bJ] and e is an error vector. Note that the first column 

in X, i.e., x0 consists of only constants which, after mean-centering, become zero and 

consequently x0 is omitted. When X is of full rank the least squares solution is: 

෠ܾ ൌ ሺࢄ்ࢄሻିଵ܆T(1.4)                                                                                 ܡ 

where ෠ܾ is the estimator for the regression coefficients in b. An obvious disadvantage using 

MLR as regression method in QSAR is: when I ൑ J Figure (1-7) X is not of full rank and 

ሺࢄ்ࢄሻିଵ in Equation 1.4, is not defined and b cannot be estimated. In the following 

section the problem with multicollinearity (39), i.e. the case when X not is of full rank, will 

be discussed. 

The stepwise multiple linear regression is a commonly used variant of MLR. In this 

case, also a multiple-term linear equation is produced, but not all independent variables are 

used. Each variable is added to the equation at a time and a new regression is performed. 

The new term is retained only if the equation passes a test for significance. This regression 

method is especially useful when the number of variables is large and when the key 

descriptors are not known. However, if the number of variables exceeds the number of 

structures, alternative methods such as projection methods should be considered. As a 

consequence, MLR can be used but a careful selection within the set of available  

descriptors has to be performed as proposed in the previous section. 
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Figure(1-7) A typical QSAR data set: X is of the dimensions I ×J where J > I with a single response 

variable y (I ×1). 

 

1.5.3.3.2. Support vector machine (SVM) 

The Support vector machine (SVM) is a machine-learning technique for 

classification that involves a non-linear mapping of data into a high-dimensional feature 

space, then using structural risk management to find a separating hyperplane with the 

largest margin between the transformed data. These learning machines have been shown to 

classify with accuracy at least as good as the various neural net methods. 

While SVMs achieve excellent predictive power, they are not simple to interpret, 

and little work has been done in this area (40). They are popular in a variety of disciplines 

as they perform well on various data sets. The drawback of this method is the models build 

time, due to the quadratic programming step of the algorithm for building a SVM. By 

nature they avoid local minima, thus aiding predictive power. Like most classifiers, 

researchers have modified SVMs to improve them. Most of this work has been focused on 

the kernel, either creating new or modifying the common radial basis function (RBF) or 

Polynomial kernels. Vapnik is credited with the original work on SVMs (41). SVMs work 

effectively on both linear and non-linear problems. 

In support vector regression (SVR), the basic idea is to map the data x into a 

higher-dimensional feature space F via a nonlinear mapping Φ, and then to do linear 

regression in this space. Therefore, regression approximation addresses the problem of 

estimating a function based on a given data set G= {( xi,di)}in (xi is the input vector, di is 

the desired value, and n is the total number of data patterns). SVM approximate the 

function using the following: 

 

y = f(x) = wΦ(x) + b                                                                    (1.5) 
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where Φ(x) denotes the element wise mapping from x into feature space. The coefficients 

w and b are estimated by minimizing 

ܴௌ௏ெ௦ሺܥሻ ൌ ܥ ଵ

௡
∑ ,௘ሺ݀௜ܮ ௜ሻݕ ൅ ଵ

ଶ
௡||ݓ||

௜ୀଵ

ଶ
                                  (1.6) 

 

,ఌሺ݀ܮ ሻݕ ൌ ሼቄ|݀ െ |ݕ െ ݀|ߝ െ |ݕ ൒ ߝ
݁ݏ݅ݓݎ݄݁ݐ݋                0

                                           (1.7) 

In Equation 1.6, RSVMs is the regularized risk function, and the first term 

ܥ ଵ

௡
∑ ,௘ሺ݀௜ܮ ௜ሻ ௡ݕ

௜ୀଵ  is the empirical error (risk). They are measured by the ε-insensitive loss 

function (Lε) given by Equation 1.7. This loss function provides the advantage of enabling 

one to use sparse data points to represent the decision function given by Equation 1.5. The 

second term 
ଵ

ଶ
 ||w||2, on the other hand, is the regularization term. C is referred to as the 

regularized constant, and it determines the tradeoff between the empirical risk and the 

regularization term. Increasing the value of C will result in the relative importance of the 

empirical risk with respect to the regularization term to grow. ε is called the tube size, and 

it is equivalent to the approximation accuracy placed on the training data points. Both C 

and ε are user-prescribed parameters. 

Finally, by introducing Lagrange multipliers (ai,ai
 and exploiting the optimality (٭

constraints, the decision functiongiven by Equation 4 has the following explicit form: 

݂ ቀݔ, ܽ௜, ܽ௜
ቁ٭ ൌ ∑ሺ ܽ௜ െ ܽ௜

,ݔሺܭሻ٭ ௜ ሻݔ ൅ ܾ                                 (1.8) 

Based on the Karush-Kuhn-Tucker (KKT) conditions of quadratic programming, 

only a number of coefficients (ai ,ai
 will assume nonzero values, and the data points (٭

associated with them could be referred to as support vectors. In Equation 1.8, the kernel 

function K corresponds to K(x,xi) = Φ(x).Φ(xi). One has several possibilities for the choice 

of this kernel function, including linear, polynomial, splines, and radial basis function. The 

elegance of using the kernel function lies in the fact that one can deal with feature spaces 

of arbitrary dimensionality without having to compute the map Φ(x) explicitly. The overall 

performances of SVM models were evaluated in terms of root mean square error (RMSE), 

which was defined as below: 

ܧܵܯܴ ൌ ට
∑ ሺ௬ೖି௬^ೖሻ మ೙ೞ

೔సభ

௡ೞ
                                                                 (1.9) 

where yk is the desired output, y^
k is the predicted value and ns is the number of samples in 

the analyzed set. 
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1.5.3.4.Model validation 

Since the real utility of a QSAR model is its ability to accurately predict the 

modeled property for new chemicals and to interpret the model from the point of view of 

influential descriptors, a realistic assessment of the power of the model is necessary for a 

confident application. 

 

1.5.3.4.1. Measure of goodness of fit 

To assess the goodness-of-fit, the coefficient of multiple determinations is used. R2 

estimates the proportion of the variation in the response that is explained by the predictor. 

ܴଶ ൌ 1 െ
∑ ሺ௬೔ି௬ො೔ሻమ಺

೔సభ

∑ ሺ௬೔ି௬തሻమ಺
೔సభ

                                                                (1.10)                                                   

where ݕ௜ is the observed dependent variable, ݕത the mean value of the dependent variable 

and ݕො  the calculated dependent variable. If there is no linear relationship between the 

dependent variable and the descriptors then R2 = 0.00; if there is a perfect fit then R2 = 

1.00. R2 values higher than 0.50 indicate that the explained variance by the model is higher 

than the unexplained one. The end-user(s) of a QSAR model should decide what value of 

R2 is sufficient for the specific application of the model. The value of R2 can generally be 

increased by adding additional predictor variables to the model, even if the added variable 

does not contribute to reduce the unexplained variance of the dependent variable. It follows 

that R2 should be used with caution. This can be avoided by using another statistical 

parameter - the so-called adjusted R2 (ܴ௔ௗ௝
ଶ ). 

ܴ௔ௗ௝
ଶ ൌ 1 െ ሺ1 െ ܴଶሻሺ ூିଵሻ

ሺூି௞ሻ
                                                                            (1.11) 

ܴ௔ௗ௝
ଶ  is interpreted similarly to the R2 value, except that it takes into consideration the 

number of degrees of freedom. The value of ܴ௔ௗ௝
ଶ  decreases if an added variable to the 

equation does not reduce the unexplained variance. 

 

1.5.3.4.2. Measure of the validity of the model 

A necessary condition for the validity of a regression model is that the multiple or 

squared correlation coefficient R2 is as close as possible to one and the standard error of 

the estimate se is small. However, these conditions measure how well the model is able to 

mathematically reproduce the end point data of the training set. But they are an insufficient 

condition for model validity, as they do not express the ability of the model to make 

reliable predictions on data outside the training set. Therefore, extra conditions need to be 


