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Abstract

The Novel Improvements to Finite Difference Time Domain’
Modeling: Applications in NanoOptics and NanoPhotonics

The Finite Difference Time Domain (FDTD) method is a robust
computational technique that can be applied to a wide range of applications
in optics. However, due to the staircasing problem, very fine meshes, and
consequently high computing resources are required to model curved
interfaces, especially for metals. This thesis deals with the development of a
systematic framework for modeling dielectric and dispersive materials’
boundaries so that one can obtain accurate results from FDTD simulation
using personal computers. Effective permittivities for the two-dimensional
FDTD method are derived using a contour path approach that accounts for
the boundary conditions of the electromagnetic fields at dielectric
interfaces. Our schemes are validated using Mie theory for the light
scattering from a dielectric cylinder. Significant improvements in terms of
accuracy and error fluctuations are observed, especially in the calculation of
resonances. To deal with dispersive materials, we combine a contour-path
approach with Z transform to handle both the electromagnetic boundary
conditions at the interface and the negative dispersive dielectric function of
the material. We compare the accuracy of the standard two-dimensional
FDTD method in modelling Surface Plasmon Polaritons (SPPs). The results
show a considerable reduction of relative error by an order of magnitude,
Finally, we investigate the accuracy of these approaches by applying them
to some common problems in Nano-Optics and Nano-Photonics. This set of
systematic tests demonstrates the accuracy and efficiency of our methods.
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Chapter One
Introduction and Overview of Thesis

1.1 Towards Nanoscale Optics

In recent years, there have been increasing efforts to replace traditional
electron-based devices by the photon-based counterparts. The existing
electronic devices are very slow devices compared to photonic ones.
Moreover, there is a fundamental limit on the miniaturization of electronic
devices, leading to a bound on the maximum data transportation and data
processing speed. Several photonic devices have already been realized and
employed in real-world technology to overcome limitations of the
traditional devices. In particular, one can name photonic devices exploiting
optical fibers with applications in signal transmission, amplification,
routing, filtering, etc. Extraordinary optical properties of materials such as
nonlinearity, electro-optics properties, and types of anisotropies allow us to
try alternatives for nearly all active and passive electronic devices.
Although these photonic devices will solve the problem of slow operation,
they are too large to allow the fabrication of all-optical chips analogous to
their electronic counterparts, i.e. electronic integrated circuits. Scaling
down photonic devices to nanometric dimensions is a major goal of current
researches in Photonics, leading to a new emerging field called
NanoPhotonics. Controlling light at the nanoscale is the major subject in
NanoPhotonics. Recent advances in nanotechnology, in particular,
fabricating nanoscale structures allow the realization of novel photonic
devices which can confine and guide electromagnetic energy in sub-
wavelength scales. In this context, perhaps, Photonic Crystals (PCs) are




paid most widely attentions. Yablonovitch [1] and John [2] independently
introduced the concept of PCs as means which offer the possibility of
inhibition of spontaneous light emission and strong photon localization by
modifying the mode structure and the density of states. They exhibit a

" photonic band-gap, i.e., a region with vanishing density of states and

prohibited propagation. Therefore, an emitter with a transition frequency
within the band-gap is not able to emit photons. Very soon, it was revealed
that controlling the spontaneous emission is just one of many exciting
possibilities which PCs can offer. The subsequent ideas were mainly based
on the purely classical propagation properties of photonic crystals. By
controlled inclusion of point or line defects into an otherwise perfect PC,
various novel photonic devices have been realized. A point-like defect
results in a very high quality factor cavity with very small mode volumes
[3] and line defects provide a possibility to manipulate the propagation of
light. The PC waveguides have several advantageous compared to the
conventional optical waveguides based on the principle of total internal
reflection. The guiding in PC waveguides can happen in low index
materials or even in air providing very low absorption losses and material
dispersion. Moreover, very high intensities can be guided without unwanted
nonlinear interaction. They can guide light through very sharp bend (even
of 90 degree) with extremely low transmission losses for a wide range of
frequencies [4, 5]. Therefore PCs can provide efficient interconnection
between elements of photonic circuits such as filters, waveguides,
nanocavities, etc. In addition, the possible integration of active devices,
such as defect mode lasers into photonic crystals [6] has  triggered
intensified research activities for the development of highly integrated
optical circuits. It is beyond the scope of this introduction to cite all
possible applications and devices proposed in recent years.

The diffraction limit for the guiding of electromagnetic energy
imposes a lower limit of a few hundred nanometers for the size on these
optical devices. However, to realize the optical analogy of highly integrated
electronic devices with lateral dimensions of a few tens of nanometers, we

must reduce the size of photonic devices beyond the diffraction limit. One



approach to overcome the diffraction limit is based on the so-called Surface
Plasmon Polariton (SPP) optics which offers the possibility of achieving a
strong spatial confinement of electromagnetic fields. SPPs are collective
electron oscillations coupled to a light field which are propagating along a
dielectric-metal interface and decay exponentially perpendicular to the
interface into both neighboring media [7]. The guided electromagnetic
energy is trapped on the surface of the metal and confined to dimensions
below the diffraction limit. Furthermore, SPPs offer a way of reducing
optics to two dimensions. Due to their particular near-field characters and
huge field enhancement effects, SPPs are being explored for their potential
applications in sub-wavelength Optics, data storage, light generation,
quantum information, microscopy and bio-photonics, etc [8, 9]. Two-
dimensional surface plasmon (SP) photonic crystals exhibiting a plasmonic
band-gap have also been reported [10-12]. Moreover, SP waveguiding in
SP crystals, enhanced optical transmission through nanosize holes, as well
as light-controlled optical switching have been demonstrated [11-14]. It is
now widely expected that SPs will play an important role in future
integrated NanoPhotonics. _

Another approach to light guiding beyond diffraction limit is to
exploit metal nanoparticles which sustain the so-called Localized Surface
Plasmons (LSPs). LSPs are collective oscillations of charge density in
bounded metallic nanostructures which are resonantly excited by an
electromagnetic field with appropriate frequency and polarization [15-17].
The extremely large and localized electromagnetic fields associated with
the plasmon resonances together with the large scattering cross sections
(SCSs) at specific wavelengths have stimulated research in recent years. For
instance, Plasmon coupling along a chain of particles can lead to the
coherent propagation of electromagnetic energy below the diffraction limit
[18-21].

Parallel to the development in the confinement and guiding light in
nanostructures, the studies of optical phenomena at the nanometer scale has
triggered remarkable progress in other fields like Spectroscopy, Biology,
Medicine, etc. In this context, one can name Scanning Near Field Optical




Microscopy, NanoAntenna, Bilogical labeling and tracking, Tumor therapy,
Laser spectroscopy of a single molecule, studying the influence of a single
gold nanoparticle on a single molecule, controlled coupling of a nano-
emitter to a single mode of a microcavity, study of single organic molecules
as quantum optical systems, and many other emerging and exciting fields.
All these subtopics are treated within the scope of NanoOptics {8, 22-26],
which, in general, studies the interaction of light and matter at the

nanometer scale.

1.2 NanoOptics: Theoretical Considerations

Since optical phenomena are straightforward to observe, from ancient times
people have investigated the nature of light and developed theories to
explain the light behavior. The invention of novel optical instruments
initiated breakthrough in optical theories. In 1621, Willebrord Snell (1591-
1626) found the law of refraction from which the theory of geometrical
optics was developed. Robert Hooke (1635-1703) formulated the wave
theory of light. Christiaan Huygens (1629-1695) developed the well-known
Huygens principle. The wave theory was improved further by Augustin
Jean Fresnel (1788-1827), Joseph Fraunhofer (1787—1826), and Gustav
Robert Kirchhoff (1824-1887) who completed the theory of diffraction.
Based on the experiments by Heinrich Rudolf Hertz (1857-1894) in 1888,
the nature. of light was understood to be a transverse electromagnetic wave
and Optics was introduced as a branch of Electrodynamics. James Clerk
Maxwell (1831-1879) derived the fundamental equations of
Electrodynamics. Very soon after the wave theory of light was completely
formulated, Max Planck (1858-1947) introduced the concept of quantum
theory and showed that Maxwell's equations are not accurate in describing
the nature and the properties of light.

Although we are aware that Quantum Theory is nowadays the most
complete theory, we still use and study the old and incomplete theories: We

use geometrical optics to calculate the refraction, Huygens principle to




explain the interference, Kirchhoff’s diffraction theory to compute the
diffraction of light by macroscopic objects and finally Maxwell’s equation
to describe the light-matter interaction. The reason is that the more
developed theories are more complicated and we prefer to work with the
simpler one as long as it is valid to describe the optical phenomena under
investigation. ,

Now, the question is: "Which theory can be properly adopted for
NanoOptics?" To answer this question, we should investigate the validity
scope of each theory regarding the light wavelength and the size of
interacting object. When wavelength is much smaller than the object size,
Geometrical Optics is a first approximation which ignores the wave
behavior of light. A better but more complicated option would be
Kirchhoff’s diffraction theory which allows for the wave nature of light.
Kirchhoff’s theory attributes ideal properties to the object such as perfect
conductivity or real refractive index and assumes a scalar approximation.
When the wavelength and the object size are comparable, or the vector
properties of the fields are important, we should switch to Classical
Electrodynamics. At atomic level, however, the only possibility is Quantum
Theory. As the term "NanoOptics" implies, we are dealing with objects
smaller than one micron which are comparable to the wavelength of light in
optical region of electromagnetic spectrum. Therefore, we are not allowed
to take advantage of simplifications offered by Geometrical Theory or
Diffraction Theory and we have to live with Classical Electrodynamics or
Quantum Theory of light. Fortunately, most optical phenomena at the
nanoscale can be well described by Classical Electrodynamics. However,
when the precise formulation of the emission or absorption of photons is
important or when photon-particle interactions are essential, the classical
solutions become inaccurate and we have to replace the Maxwell
description of light by a pure quantum description or by semiclassical

theories.




1.3 Computational Electrodynamics

Having adopted the Classical Electrodynamics, one has to find the solutions
to the Maxwell’s equatioﬁs. Althdﬁgh, these equations look simple, there
are only a few rare electromagnetic cases where they can be solved exactly.
Therefore, approximate mathematical methods have been developed. When
computers became available, a new class of methods began to evolve;
Computational Electrodynamics. Computer techniques have revolutionized
the way in which electromagnetic problems are analyzed. Besides, they are
widely utilized in technology as powerful design tools which offer a
relatively inexpensive way of designing safe and reliable modern devices
by testing a large number of different constructions without actually
building them. A pure heuristic try and error approach without supporting
simulation would be waste of time and resources. »

Development and analysis of computational methods for solving the
Maxwell’s equations are today very active fields of research and varieties of
numerical techniques have been proposed. Each technique has its
advantages and disadvantages, no unique method covers all applications.
One may choose a suitable method regarding the required accuracy, the
total simulation time, the type of results required, the frequency region, and
so on. There are different classifications for computational techniques, and
each technique may be categorized in more than one group. Instead of
discussing the individual methods, we present a brief description of these-
classifications, together with the advantages and drawbacks of each
category which apply as well to its members. Then, we briefly review most
commonly computational techniques currently applied to NanoOptics
problems.

a) Analytical Techniques versus Numerical Techniques. As emphasized
earlier, there are a few cases where Maxwell’s equations can be solved in a
closed-form. Therefore, for almost all real world problems we need to
exploit numerical techniques which solve fundamental field equations
directly, subject to the boundary constraints posed by the geometry.




