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Abstract

Theoretical Study on the Kinetics of Unimolecular Reaction of 1,2-
Dichloroethane and Bimolecular Reaction H + HOO, Synthesis and

characterization of Silicon Carbide Nanosturctures
By
Vahid Saheb

Theoretical studies are performed on the kinetics of two reactions,
unimolecular decomposition of 1,2-Dichloroethane and the reaction of
atomic hydrogen with hydroperoxyl radical (HO,). Geometries, vibrational
frequencies, and moments of inertia of all stationary points including
reactants, transition states, energized intermediates and products are
calculated by quantum mechanical methods.

RRKM theory is used to calculate the rate constants of unimlecular paths
involved in decomposition of 1,2-Dichloroethane. The results show that the
most dominant reaction is four-center HCI elimination reaction.
Transition state theory is used to calculate the rate constants for those
reaction channels of H + HOO reaction which proceed through a saddle
point. The results from different levels of theory are reported for
comparison.

On singlet potential energy surface, two reaction channels in H + HOO
system proceed through potential wells. A TST-RRKM model is used to
calculate the rate constant for these channels. It is concluded that most of
atomic oxygen is formed through this intermediate on a singlet potential
energy surface. Neglecting the formation of H,00" causes the theoretical
results do not agree with the experimental results.

Aside from theoretical kinetics studies, silicon carbide (SiC)
nanostructures are synthesized by a magnesium-catalyzed chemical co-
reduction route. Fourier transform infrared spectroscopy (FTIR), scanning
electron microscope (SEM), transmission electron microscope (TEM), and
photoluminescence (PL) spectroscopy were used to characterize the gray
product obtained. It is shown that well crystalline SiC nanorods is

produced.
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