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Abstract

Optimization is one of the most interesting and essential subjects in the design of energy
systems. In large thermal systems, which have many design variables, conventional
mathematical optimization methods are not efficient. Thus, exergoeconomic analysis can
be used to assist optimization in these systems. In the first part of this thesis, a new
iterative approach for the optimization of complex thermal power plants based on the
exergoeconomic analysis and the structural optimization method is proposed.
Exergoeconomic analysis is used to determine the sum of the investment and exergy
destruction cost flow rates for each component. A numerical sensitivity analysis is
performed in order to determine the importance of each decision variable, and by using
the structural optimization method, the total cost flow rate is minimized. The advantages
of this new iterative methodology are: (a) it can be applied to the large real complex
thermal systems, (b) the procedure of optimization is performed without user interface,
and (c) since a numerical sensitivity analysis is used, convergency is improved. The
proposed methodology is applied to the benchmark CGAM cogeneration system to show
how it minimizes the total cost flow rate of operation for the installation. Results are
compared with original CGAM problem.

In any energy system that produces work, heat and so on, disposal remaining flows of
matter or energy, which are called residues, will appear. In the exergoeconomic analysis
of these systems, one of the complex problems is residues cost allocation in a rational
way. Two more important criteria of the residues cost allocation are distribution of the
cost of the residues proportional to the exergy as well as proportional to the entropy
variation along the process. In the second part of this thesis, a new criterion for the
residues cost allocation is proposed that it is based on the entropy distributed in the
components, and not on the entropy variation along the process. This new criterion uses
the fuel-product (FP) table, a mathematical representation of the thermoeconomic model,
as input data. The important characteristic of this new criterion is the use of new FP table
(FP® table) which is constructed using energy and exergy of flows. The proposed
criterion is applied to a combined cycle and a cogeneration system, and results are
compared with the two other criteria. Results show that this criterion is more suitable and

rational than the two other criteria.

Keywords: Optimization, Exergoeconomic, Structural Optimization, Cost Allocation,

Residue, FP Table
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Chapter 1

Introduction



Section 1: Introduction, Definition of Problem and Importance of Study

1.1. Introduction

Regarding to importance and worth of energy and increasing of energy price in the world
with finite natural resources - decreasing of energy consumption, increasing of exergetic
efficiency, decreasing of production costs and reducing the impact on the environment -
optimization and improving the energy systems are necessary. Analysis of energy
systems based on the second law of thermodynamics called exergy analysis. Exergy
analysis usually predicts the thermodynamic performance of an energy system and the
efficiency of the system components by accurately quantifying the entropy-generation of
the components. Furthermore, thermoeconomic analysis (a combination of
thermodynamic and economic analysis) estimates the unit cost of products such as
electricity and steam and quantifies monetary loss due to irreversibility. Also, this
analysis provides a tool for the optimum design and operation of complex thermal
systems. At present, such analysis is in great demand because proper estimation of the
production costs is essential for companies to operate profitably. Two of the most
objectives of thermoeconomic analysis are optimization of energy system and
determination of production costs. There are several methods for thermoeconomic
analysis. All of them can be grouped in two main categories: the algebraic methods and
the calculus methods. The algebraic methods focus on the determination of the average
costs. On the other hand, the calculus methods focus on the determination of the marginal
costs. Optimization has always been one of the most interested and essential subjects in
the design of energy systems. Usually we are interested to know optimum conditions of
thermal systems. Thus we need methods for optimization of such systems. In large
complex thermal systems, which have many design variables, conventional mathematical
optimization methods are not efficient. Thermoeconomic optimization methods are
generally based on the marginal costs while average costs are used in the exergoeconomic
analysis of the systems. Thus, exergoeconomic analysis can be used to assist optimization
these systems. On the other hand, complex thermal systems cannot always be optimized
using mathematical optimization techniques. The reasons include incomplete models,
system complexity and structural changes.

Complex thermal systems refer to the systems that usually have two characteristics, one,
they have a large number of components and another, a large number of design (decision)
variables. It should be mentioned that a thermal system with a few components can be
considered as a complex thermal systems because of its large number of design (decision)

variables, or vice versa.



As different methodologies of thermoeconomic are applied to an energy system, the
results are not the same. Also, in conventional thermoeconomic methods, the problem of
the cost allocation of residues has not been considered soundly. This problem is more
important for a correct cost allocation, since it affects the identification and quantification
of the system malfunctions and fuel impact formula. Thus, it is necessary that a more

careful study is performed on the cost formation process of residues.

1.2. Definition of Problem

This thesis is presented with the title of “exergoeconomic analysis of a cogeneration
system and proposal for a new approach for optimization based on the structural method”.
In this thesis, firstly using concepts of exergoeconomic a new optimization method is
proposed that it is based on the structural optimization method and is applicable to the
real complex thermal systems. Then, regarding to importance of a correct cost allocation
and difficulties of previous methods, a more detail analysis is performed and a new

approach for the cost allocation of residues is proposed.

1.3. Importance and Objectives of Study
The conventional optimization methods are not efficient enough when they are applied to
the large complex thermal systems and can not overcome to the optimization problem. In
the last years, iterative optimization methods have been proposed to optimize the thermal
systems using exergoeconomic concepts. These methods have some difficulties, too. For
example, they need to user interface in each iteration or conventional optimization
methods as auxiliary methods. Other problems of these methods will be stated in chapter
5.
On the other hand, in exergoeconomic analysis of thermal systems the cost allocation of
residues is a complex problem since it depends on the nature of such flows and how they
have been formed. The available methods for cost allocation of residues differ greatly
with each other. Thus, a more careful and appropriate study must be performed in this
filed. Two objectives in this thesis are as follows:

» Proposing a new method for optimization of complex thermal systems using

concepts of exergoeconomic based on the structural optimization method
» Studying the methods of residues cost allocation and suggesting a more

appropriate method



1.4. Outlines
Chapter 1 is presented in two sections. Section 1 includes the introduction, definition
of problem and importance of this study. In section 2, firstly a review of previous
works is presented and then advantages of present work relative to other works are
stated. In chapter 2, the optimization methods are discussed. In chapter 3, firstly
definition and importance of thermoeconomics is stated. Then, objectives and
methods of thermoeconomics, the concept of cost, fundamentals of thermoeconomics
and some important definitions in this field are presented. In chapter 4, the CGAM
problem, the average cost theory (ACT) method and the exergetic cost theory (ECT)
method are presented. Also, the cost formation process of residues is discussed. In
chapter 5, firstly the iterative optimization method that has been introduced by
Tsatsaronis and Moran, is presented and its advantages and disadvantages are stated.
Then, a new iterative method for optimization of complex thermal systems using
concepts of exergoeconomic based on the structural optimization method is proposed.
Finally, results and discussions are presented. In chapter 6, firstly two important
methods of the residues cost allocation are introduced and then a new method is
proposed. Three methods are applied to a combined cycle and a cogeneration system
and then, the results and discussions are presented. In chapter 7, concluding Remarks

are presented.



Section 2: Review on the Previous Works

1.5. Introduction

Exergy is one of the important concepts of second law of thermodynamics, which is the
maximum useful work that we can obtain from flow of mater or energy. Analysis of
energy systems based on the second law of thermodynamics called exergy analysis. This
analysis determines irreversibility and energy losses in the system. The main goal of
exergy analysis is to find location and amount of irreversibility of a system. Also, exergy
analysis provides a tool for the optimum design and operation of complex thermal
systems. The second law of thermodynamics combined with economics represents a very
powerful tool for the systematic study and optimization of energy systems. This
combination forms the basis of the relatively new field of thermoeconomics
(exergoeconomics). The basic theory of exergy analysis was developed by Grassman,
Nesselman, Elsner, Faratzcher, Szargut, Petela and ...during 1950-1966. The results of
these studies were presented as formulas, tables and charts for exergy analysis of different

energy systems.

1.6. Literatures Review

The idea of coupling exergy and cost streams was first discussed by Keenan in 1932 [1].
He pointed out that the value of the steam and the electricity rests in the ‘‘availability”’
not in their energy. In the late 1950s, the studies of second law costing started in two
different places independently. Exergy analysis of desalination processes was studied by
Tribus and Evans [2] which led them to the idea of exergy costing and its applications to
engineering economics. Also, they suggested the word ‘‘thermoeconomics’’. The concept
of their procedure was to trace the flow of money, fuel cost and operation and amortized
capital cost through a plant, and associate the utility of each stream with its exergy. Also
the optimal design of power plant steam piping and its insulation were studied by
Gaggioli [3] in his Ph.D. thesis. In the late 1960s, El-Sayed connected with Evans and
Tribus in their research on desalination process and they published one of the important
papers in the subject in 1970, in which the mathematical foundation for thermal system
optimization was suggested [4]. Reistad [5] applied the method of El-Sayed and Evans to
a simple power plant and compared that approach with conventional optimization
procedures.

In Europe, many important works on the second law analysis methodologies and on
“‘exergy’’ itself were performed in late 1950s and during 1960s and 1970s. Bergmann

and Schmidt assigned costs to the exergy destruction in each component of a steam power



