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ABSTRACT

CLASSIFICATION OF ANALYTIC CROSSED
| PRODUCT OF C*— ALGEBRAS.
BY |
M.T.HEYDARI

If X, is a locally compact Hausdorfl space and ¢, : X, — X, is
a homeomorphism, 1 = 1,2, then (X1, 1) and (X3, ¢2) are said to be
conjugate if there is a homeomorphisin ¢ : X, — X, such that Vo, =
oy

Let Co(X) x4 Z be the C*-crossed product of (X, #).The semi-crossed
product associated to (X, ¢) is the closed subalgebra of the C*—algebra
Co(.X) x4 Z, and denoted by Co(X) x,. Z,.

This dissertition contains three chapters. In chapter one, we will give
some basic definitions, theorems and some concepts which we will need
later on in our work.

Chapter two is devoted to the crossed product of C*-algebras.

The semi-crossed product of C*-algebras, its structure and its classi-
fication are disscused in chapter three.

Finally we prove that:

The semi-crossed products Co( X;)x4,Z, and Co(X2)x4¢,Z, areisomor-
phic as compelex algebras if and only if the pairs (X1, ¢1) and (X3, ¢,)

are conjugate.
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Chapter 1

ELEMENTARY C*-ALGEBRA THEORY

In this chapter we study a special class of Banach-algebras, termed
C*-algebras, the ones that have an involution with properties parallel
to those of the adjoint operation on Hilbert space operators. With X
a compact Hausdorff space and H a Hilbert space, C(X) and B(H)
are examples of C*-algebras, and so is each norm-closed subalgebra of
B(H) that contains the adjoint of each of its members. Two basic rep-
resentation theorems assert that, up to isomorphism, these are the only
examples; every C*-algebra can be viewed as normed, closed self-adjoint
subalgebra of B(H), for an appropriate choice of H, and every abelian
C"-algebra is isomorphic to one of the form C(X).

In section 1 we shall recall the basic definitions.

Section 2 starts with the concepts of positive elements, state, vector
state and pure state. At the end of this section we proved that every
abelian C*-algebra is isomorphic to one of the form C(X).

Section 3 is devoted to the representation of a C*-algebra on a Hilbert

space.

1.1 Basics

Definition 1.1.1 If X is a vector space over F(= C orR), a seminorm

is a function p: X — [0, 00) having the properties:




(a) p(z +y) < p(z) + p(y)

(b) p(az) = |alp(z). a€F; z,yeX

In follows from (b) that p(0) = 0, A norm is a seminorm p such that:
(c)z =0 if p(z) = 0.

Usually a norm is denoted by ||.||.

A normed space is a pair (X, [|.|[), where X is a vector space and |[.||

is a norm on X.

Definition 1.1.2 A topological vector space over a field F (TVS) is a
vector-space X together with a topology such that with respect to this
topology
(a) the map of X x X — X defined by (z,y) > z+y is continuous;
(b) the map of F x X — X defined by (o, z) — az is continuous.

It is easy to see that every normed space is a TVS. Suppose X
is a vector space and P is a family of seminorms on X. Let 7 be the
topology on X that has a subbase the sets {z : p(z — zo) < €}, where
p € P,zo € X, and £ > 0. Thus a subset V of X is open if and only
if for every zp in V there are py,ps,-++,p, in P and €,-++,£, > 0 such
that N7_,{z : pj(z — o) < &;} C V. It is not difficult to show that X
with this topology is TV S.

A locally convez space(LCS) is a TVS whose topology is defined
by a family of seminorms P such that N,ep{z : p(z) = 0} = (0). This
condition implies that the topology defined by P is Hausdorff. In fact,
suppose that z # y. Then there is a p in P such that p(z — y) # 0, let
p(—y) > €>0 U = {z: p(z—2) < ¢/2} and V = {2 : p(y—2) < ¢/2},
then UNV =@ and U and V are neighborhoods of z and y, respectively.




Example 1.1.1 Let X be a normed space and for each z* in X*(= the
set of all continuous linear functionals on X), define p,-(z) = |2*(z)|.
Then p,- is a seminorm and if P = {p,» : z* € X*},P makes X into a
LCS.

The topology defined on X by these seminorms is called the weak
topology or(wk)topology onX; and is often denoted by o(X, X*).

Example 1.1.2 Let X be a normed space and for each z in X define
Pz 1 X* — [0,00) by pz(z*) = |z*(z)|. Then p. is a seminorm on X*,
and P = {p; : z € X} makes X* into a LCS. The topology defined by
these seminorms is called the weak — star topology or (wk*) topology on
X*. It is often denoted by o(X*, X).

Definition 1.1.3 If X is a vector space over F(C orR), an inner product
on X i3 a function < .,. >: X X X = F such that:
(a) <y,z >=<7,y>. (The bar denotes the complez conjugation.)
()<z+yz2>=<z,2>+<y,z>ifz,yandz€ X,
(c)<az,y>=a<z,y>ifz andy € X and o is a scalar,
(d) <z,z>>0forallze X,
(e) <z,z>=0onlyifz=0
An inner product space is a pair (X,< .,. >), where X is a vector

space and < .,. > 13 an inner product on X.




If (X,< .,. >) is an inner product space, it is a normed space with,

lz|] =< z,z >3

Definition 1.1.4 A Hilbert space is a vector space H over F = (C orR)
together with an inner product < .,. > such that relative to the metric

d(z,y) = ||z — yl| induced by the norm, H is a complete metric space.

Let B(H) be the set of all continuous linear transformations from H

into H. If A € B(H), then || 4[| = sup{||Ah{], [A]} = 1}.

Definition 1.1.5 If H is a Hilbert space, the weak operator topology(WOT)
on B(H) is the locally convez topology defined by the family of seminorms
{oni : b,k € H}, where pri(A) = | < A,k > |.

The strong operator topology(SOT) is the topology defined on B(H)
by the family of seminorms {py, h € H} where p,(A) = ||A(h)|-

Definition 1.1.86 A Banach space is 4 normed space that is complete
with respect to the mertic defined by the norm, d(z,y) = ||z — y||. An
algebra over F = (C orR) is a vector space U over F = (C orR) that
also has @ multiplication defined on it that makes U into a ring such that
fae€F =(CorR) and A,B € U,a(AB) = (aA)B = A(aB).

Definition 1.1.7 A Banach algebra is an algebra U over F = (C orR
that has a norm ||.|| relative to which U is a Banach space and such that
for all A, B € U, ||AB|| < {|Alll|BII




IfU is a Banach algebra, an involution is a map A — A* of U into U
such that the following properties hold for A and B inU and a € C:
(i) (A*) = A
(i) (AB)* = B*A*
(i) .(aA + B)* =aA* + B*.

Definition 1.1.8 A C* — algebra is a Banach algebra U with an invo-
lution such that for every A in U, ||A*A]| = ||A]|%

All C*-algebras in this dissertation are assumed to has unitary unless
the contrary is specified.

This last condition ensures that the involution in a C*-algebra pre-
serves norm (and is therefor continuous); for || 4| = [|A* A]| < []A*||||A]l,

whence || A]| < |[A*||, and we obtain the reverse inequality upon replacing
A by A*.

We have already encountered several examples of C*-algebra.

Example 1.1.3 Let H be o Hilbert space and B(H) be the set of all
bounded operators on H. Define sums and products of elements of B(H)
in the standard manner and equip this set with the operator norm

| All = sup{l[Ahl| : h € H,|[h]| = 1}.

The Hilbert space adjoint operation (i.e If A € B(H), then A* is the
unique operator in B(H) satisfying,

< Ahk >=< h, A’k > forallh,kc H

5




defines an involution on B(H) and with respect to these operations and
this norm B(H) is a C*-algebru.

Al = sup{< Ah,Ah> ke H,||h|| =1}
= sup{< h,A*Ah > h € H,||h|| =1}
< sup{|[A*Ah||,h € H,|[h|| =1}
= ||[4*All < [|A*[|All = [|All*, then :

flAl? = [l44*l.

Example 1.1.4 Let X be a locally compact space and Cy(X) be the set of
all continuous complez-valued functions over X which vanish at infinity.

By this we mean that for each f € Co(X) and e > 0 there is a compact
K C X such that|f(z)| < € for allz € X\K, the complement of K in X .
Define the algebraic operations by (f + g)(z) = f(z) + g(z), (af)(z) =
af (z),(f9)(z) = f(z)9(z), and involution by f*(z) = f(z). Finally,

initroduce & norm by

/|l = sup{|f ()| : = € X}.

It follows that Cy(X) is & commutative C*-algebra. In particular, the

norm identity s valid because
£ £l = sup{|f(z) f(z)], = € X} = sup{|f (2)*,z € X} = |If|I*.

Note that Cy(X) has the identity if and only if X is compact.

Example 1.1.5 The algebra L™(u) of all essentially bounded measur-
able functions (with pointwise algebraic operations and essential suppre-

mum norm) associsted with a measure space (S, ) is a C*-algebra;
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Jor f € L®(), [|flloo = inf{a:|f(z)| < aae}, and f*(z) = f(z)".
thus

15f*lle = infla:|f(z)f(z)| < @ae}
= infla:|fz)  <aae}
= infla:|f(z)| < a'?ae]}
= inf{f?:|f(z)| < Bae}
= (nf{B8:|f(z)| < Bae})?
= [|fll5-

For a simple example of C*-algebra, let C with ||z]| = |2| and 2* =z
(complex conjugate).

We refer to A* as the adjoint of A(€ U), and describe A as self —
adjoint if A = A*,normal if AA* = A*A,unitray if A*A = AA* = I.
The set of all self-adjoint elements of I/ is a real vector space.

Each A in U can be expressed (uniquely) in the form H+iK where H
and K are self-adjoint elements of Y, the “real“ and “imaginary“ parts
of A; moreover, A is normal if and only if H and K commute. From (ii)
of definition 1.1.7, A is invertible if and only if A* is invertible, and then
(A=) = (4%)

IfU and B are Banach algebras with involutions, a mapping ¢ from &
into B is described as a *-homomorphism if it is a homomorphism (that
is, it is linear, multiplicative, and carries the unit of U onto that of B)
with the additional property that p(A*) = @(A4)* for each A in Y. K
further, ¢ is one-to-one, it is described as a *-isomorphism. If U is a Ba-

nach algebra with involution, a subset J of U is said to be self-adjoint if

7




it contains the adjoint of each of its members. A self-adjoint subalgebra

of Y is termed a x-subalgebra.

1.2 Abelian C*-algebras

Befor introducing this section we recall some notation. let & be a C*-
algebra without identity. If we wish to consider a property of & which
deals with the identity element (e.g. the definition of the spectrum of

A € U) the following theorem is quite useful for our purpose.

Theorem 1.2.1 For each C*-algebra U there exists a C*-algebra U with
identity containing U as a closed ideal. If U has no identity then

IR

C

ol

Proof. See [14; proposition 1.1.3]. O

Note that i/ is called the C*-algebra obtained from U by adjoining
the identity 1.

Let U be a C*-algebra with identity 1. Then the spectrum spy(A) of
an element A in U is the set of all complex numbers o such that A — af

is not invertible.




If U is a C*-algebra without identity, then the spectrum spy(A) of
element A in U is the spectrum of A as an element of the C*-algebra I
obtained from U by adjoining the identity 1.

By [8, Theorem 3.2.3] spy(A) is a nonempty closed subset of the
closed disk in C with center 0 and radius ||A]|, and by [8, Theorem 4.1.5),
spu(B) = spg(B) for each C*-subalgebra B of U, where B € B. Then we
can now omit the suffices & and B, and denoted by sp(B) the spectrum
of B relative to either algebra. (In general case if if is a complex Banach
algebra, B is a closed subalgebra that contains the unit I of Y, B € B,
and a € spy(B), then al — B has no inverse in U; accordingly, it has
no inverse in B, so a € spg(B). Hence spy(B) C sps(B), and Example
3.2.19 of [8] shows that strict inclusion can occur.).

We describe an element A of a C*-algebra U as positive if A is self-
adjoint and sp(4) C R™*, we denote by U™ the set of all positive el-
ements of Y. The concept of a positive element is the abstraction of
the positive number (i.eU = C the condition sp(z) C R* implies that
sp(z) = {alal — z is not invertible } = {z} CR* then 2 > 0). If Bisa
C*-subalgebra of U, a self-adjoint element B of B is positive relative to
B if and only if it is positive relative to U (that is, BY = BNU™*). Since

it has the same spectrum in B as in Y.

Let M be a self-adjoint subspace of a C*-algebra U, and contains the
unit I of Y. The set M NUT of all positive elements of M is denoted
by M*. If M C B C U, where B is a C*-subalgebra of U, then M+ =
MAU*=MnBNUt = MnNB*; so M* is unchanged if M is viewed
as a subspace of B instead of U.
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A linear functional p on M is said to be positive if p(4) > 0, for each
A in M*; if, further, p(I) =1, p is described as a state of M.

With H a Hilbert space and z in H, the equation w.(A4) =< Az,z >
(A € B(H)) defines a linear functional w, on B(H). In view of the
equivalence of two concepts of positivity for Hilbert space operators,
wz(A) > 0 whenever A € B(H)*. Since, also, wy(I) = ||z{/?, it fol-
lows that w; is a positive linear functional on B(H), and is a state if
[[z]| = 1. If U is a C*-subalgebra of B(H), and (as usual) M is a self-
adjoint subspace of U that contains I, the restriction w_|y is a positive
linear functional on M. The states of M that arise in this way, from unit

vectors in H, are termed vector states.

Theorem 1.2.2 If M is a self-adjoint subspace of a C*-algebra U and
contains the unit I of U, a linear functional p on M i3 positive if and

only if p is bounded and ||p|| = p(I).

Proof. See [8; Theorem 4.3.2]. O

From the above theorem each state of M is a bounded linear func-
tional on M, with {|p|| = 1. Accordingly, the set S(M) of all states of
M is contained in the surface of the unit ball in the Banach dual space

M#. Tt is convex and wk*-closed, since
S(M) = {p € M*: p(I) = 1,p(4) > 0(A € M*)},

by Alaoghu' s Theorem ball(M?#) is wk*-compact and wk*-topology is
Hausdorff, then S(M) is wk*-compact. It follows that S(M), with the
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