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Abstract 
 

 

Plasma electrolytic oxidation of Ti-6Al-4V alloy to improve 

tribological and mechanical properties 

 

By 

 

Mehdi Khorasanian 

 

 

In the present work, plasma electrolytic oxidation of Ti-6Al-4V is 

investigated. The process was studied previously. In this study, the 

author tried to study some new aspects of the process. To do it, an 

electrolyte similar to that of used in other studies was selected. The 

constituents of the electrolyte were: sodium chloride, sodium 

hydroxide, sodium silicate, and hydrogen peroxide. These materials 

were used in electrolytes previously. In the present study, all of these 

constituents are used together to use the advantages of all materials. 

The application of all these materials together increases the growth 

rate and modifies the wear resistance of the coatings. Besides these 

constituents, starch was added. The primary objective of starch 

addition was to increase the viscosity and stability of the electrolyte 

against boiling and splashing out, but during the study it was clear that 

starch is effective in composition and wear resistance of the coating. 

The optimum concentrations of each of the electrolyte constituents 

were obtained by design of experiments via Taguchi method. One of 

the objectives of the present study was producing coatings comparable 

to the coatings of other researches while using very simple equipment 

and conditions. All materials used in the electrolyte were completely 

available and inexpensive and no expensive or complex were used. 

Tribological examination of the specimens coated in the optimized 

electrolyte showed that plasma electrolytic oxidation increased the 

wear resistance (reduction of friction coefficient and weight loss) of 

the alloy.  
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Introduction 

 

Ti-6Al-4V is a well-known alloy for many applications such as 

aerospace, automotive, and biomedical industries. Many studies has 

been carried out on improving the tribological behavior of the alloy 

via a variety of techniques such as physical vapor deposition 

[Ref1,Ref75, Ref119], ion implantation [Ref115], laser alloying 

[Ref116, Ref124], thermal oxidation [Ref140], sol-gel [Ref147] etc. 

one of the recently developed methods of improving tribological 

performance of this alloy is plasma electrolytic oxidation which has 

been developed rapidly in recent years. The process is a new 

generation of conventional anodizing which differs from the latter in 

applying high potentials [Ref13]. The high voltage leads to formation 

of a plasma envelope which appears as luminescent sparks on the 

surface of the anode [Ref]. The formation of plasma enhances the 

tribological properties of the coatings [Ref13]. 

Many research works studied the tribology of PEO coatings on Ti-

6Al-4V and investigated the effect of porosity [Ref52], electrolyte 

composition [Ref105], current mode [Ref6, Ref58], sparking voltage 

[Ref126] and other factors on the microstructure, chemical 

composition, tribology and mechanical properties of PEO coatings. 

The main objectives of the present work were: 

� Lowering applied voltage 

� Simplifying the process 

� High wear resistance 

Simplifying of the process was carried out by using simple equipment 

and familiar, available, and inexpensive materials. All materials were 

abundant and the process of making the electrolytes was easy. The 

power source used for PEO was a simple DC source with no extra 

attachments. 
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For lowering of the applied voltage, a combination of sodium chloride 

and sodium hydroxide was used and sodium silicate was added to the 

electrolyte for increasing the growth rate of the coatings. 

To obtain high wear resistance, starch was added to the electrolyte and 

an optimum composition of the electrolyte was calculated using a 

statistical analysis by Taguchi method. 

To evaluate the wear properties of the coatings wear tests were carried 

out by a pin-on-disk apparatus. Since one of the important 

applications of Ti-6Al-4V is production of biomedical implants, some 

wear tests were carried out in the presence of ringer's solution as the 

simulated body fluid. Results showed a better wear resistance for PEO 

coated alloy under dry conditions. In the presence of ringer's solution, 

however the uncoated alloy showed a better performance than the 

PEO coated alloy. 

Fatigue tests showed that PEO is not a suitable method to enhance the 

wear properties of the alloy because of the brittle nature of the 

coatings and increasing the probability of fatigue crack initiation and 

propagation. 
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1. Titanium and its alloys 

 

 

1.1. History of Titanium 

 

Titanium is present in the earth's crust at a level of about 0.6% and is 

therefore the fourth most abundant structural metal after aluminum, 

iron, and magnesium. The most important mineral sources of titanium 

are ilmenite (FeTiO3) and rutile (TiO2). The first suspicion of a new, 

unknown element presents in a dark, magnetic iron sand (ilmenite) in 

Cornwall (UK) was expressed in 1791 by Gregor, a clergyman and 

amateur mineralogist. In 1795, Klaproth, a German chemist, analyzed 

rutile from Hungary and identified an oxide of an unknown element, 

the same as the one reported by Gregor. Klaproth named the element 

titanium after the Titans, the powerful sons of the earth in Greek 

mythology [1,2]. 

Wilhelm Justin Kroll from Luxembourg is recognized as the father of 

titanium industry. In 1932, he obtained significant quantities of 

titanium by combining TiCl4 with calcium. He demonstrated that 

titanium could be extracted commercially by reducing TiCl4 by 

changing the reducing agent from calcium to magnesium at the U.S. 

Bureau of Mines. Today this is still the most widely used method and 

is known as the “Kroll process”. After the Second World War, 

titanium-based alloys were soon categorized as main materials for 


