

Shiraz University Faculty of Engineering

Ph.D.Thesis In Materials Engineering

Plasma electrolytic oxidation of Ti-6Al-4V alloy to improve tribological and mechanical properties

By

Mehdi Khorasanian

Supervised by

Dr. Abolghasem Dehghan (Chairman) Dr. M. H. Shariat M. E. Bahrololoom S. Javadpour

September 2011

IN THE NAME OF GOD

PLASMA ELECTROLYTIC OXIDATION OF Ti-6Al-4V ALLOY TO IMPROVE TRIBOLOGICAL AND MECHANICAL PROPERTIES

BY

MEHDI KHORASANIAN

THESIS

SUBMITTED TO THE SCHOOL OF GRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY (PhD)

IN MATERIALS SCIENCE AND ENGINEERING

SHIRAZ UNIVERSITY

SHIRAZ

ISLAMIC REPUBLIC OF IRAN

EVALUATED AND APPROVED BY THE THESIS COMMITTEE AS: EXCELLENT

..... Dr. A. DEHGHAN, ASSISTANT PROFESSOR OF MATERIALS SCIENCE AND

ENGINEERING (CHAIRMAN)

..... Dr. M. H. SHARIAT, PROFESSOR OF MATERIALS SCIENCE AND ENGINEERING

..... Dr. M. E. BAHROLOLOOM, PROFESSOR OF MATERIALS SCIENCE AND

ENGINEERING

..... Dr. S. JAVADPOUR, ASSOCIATE PROFESSOR OF MATERIALS SCIENCE AND

ENGINEERING

SEPTEMBER 2011

Abstract

Plasma electrolytic oxidation of Ti-6Al-4V alloy to improve tribological and mechanical properties

By

Mehdi Khorasanian

In the present work, plasma electrolytic oxidation of Ti-6Al-4V is investigated. The process was studied previously. In this study, the author tried to study some new aspects of the process. To do it, an electrolyte similar to that of used in other studies was selected. The constituents of the electrolyte were: sodium chloride, sodium hydroxide, sodium silicate, and hydrogen peroxide. These materials were used in electrolytes previously. In the present study, all of these constituents are used together to use the advantages of all materials. The application of all these materials together increases the growth rate and modifies the wear resistance of the coatings. Besides these constituents, starch was added. The primary objective of starch addition was to increase the viscosity and stability of the electrolyte against boiling and splashing out, but during the study it was clear that starch is effective in composition and wear resistance of the coating. The optimum concentrations of each of the electrolyte constituents were obtained by design of experiments via Taguchi method. One of the objectives of the present study was producing coatings comparable to the coatings of other researches while using very simple equipment and conditions. All materials used in the electrolyte were completely available and inexpensive and no expensive or complex were used. Tribological examination of the specimens coated in the optimized electrolyte showed that plasma electrolytic oxidation increased the wear resistance (reduction of friction coefficient and weight loss) of the alloy.

Table of Contents

Title

Page

Section One Theory	1
1. Titanium and its alloys	2
1.2. Titanium Industry Status	3
1.3. The Classification of Titanium Alloys	3
1.4. The Conventional Titanium Alloys	5
1.4.1. α Alloys	5
1.4.2. Near-α Alloys	6
1.4.3. α + β Alloys	6
1.4.3.1. Fully Lamellar Microstructures	7
1.4.3.2. Bi-Modal Microstructures	7
1.4.3.3. Fully Equiaxed Microstructures	8
1.4.4. Metastable β Alloys	9
1.5. Applications of Titanium and its alloys	9
1.5.1. Titanium Alloys for Aerospace Applications	9
1.5.2. Steam Turbine Blades	10
1.5.3. Sports and Leisure	11
1.5.4. Safety and Security	11
1.5.5. Titanium and its Alloys for Medical Applications	12
1.6. Alloy Ti-6Al-4V	13
2. Plasma electrolysis	15
2.1. Definition	15
2.2. Electrolysis Terminology	15
2.3. Plasma Terminology	17
2.4. Electrolysis Enhanced Surface Bubble Formation	18
3. Plasma electrolytic oxidation	20

Title	Page
3.1. Evolution of the process	20
3.2. History	21
3.3. Processing	23
3.4. Electrochemical characteristics	24
3.5. Mechanisms of EPT processing	26
3.6. Plasma-enhanced physico-chemical processes	27
3.7. PEO technology	31
3.7.1. Processing equipment	31
3.7.2. DC sources	32
3.7.3. Pulsed DC sources	32
3.7.4. Unbalanced AC sources	32
3.7.5. Sources of heteropolar pulsed current	33
3.8. Process monitoring in PEO	33
3.9. The effect of electrolyte composition	34
3.9.1. Electrolyte selection for PEO	34
4. Design of Experiments	37
4.1. Concept of Design of Experiments	37
4.1.1. Classical design of experiments-one factor at a time	39
4.1.2. Statistical design of experiments (DOE)	40
4.2. Taguchi Method	41
4.2.1. Orthogonal Arrays	41
4.2.2. Properties of Orthogonal Arrays	42
4.2.3. Design of experiments using orthogonal arrays	44
4.3. Mean Squared Deviation	46
4.4. Concept of Quality Characteristic	46
4.5. Definition of MSD for the Three Quality Characteristics	47
4.6. Signal-to-noise ratio	53
4.7. Analysis of Variance (ANOVA)	49
4.7.1. Two Parts of the Analysis	49
4.7.1.1. Part I- Simple Analysis	49

4.7.1.2. Part II- Analysis of Variance (ANOVA)	49
4.7.2. ANOVA Calculation Strategy	50
4.7.3. Degrees of Freedom	53
4.7.4. Confidence Level and Confidence Interval	57
4.7.5. Error Term	57
5. Past researches	58
5.1. Microstructures and growth mechanisms	58
5.2. Mechanical Properties	62
5.3. Chemical Composition	63
5.4. Thickness	63
5.5. Tribology	64
Section Two Materials and methods	65
6. Materials and methods	66
6.1. Preparation of specimens for coating	66
6.2. Preparation of the electrolyte	66
6.3. PEO process	67
6.4. Microscopic examination	68
6.5. Chemical analysis	68
6.6. Wear Test	68
6.7. Taguchi Optimization of the Electrolyte	
6.8. Fatigue tests	70
Section Three Results and Discussion	71
7. Results and Discussion	72
7.1. Taguchi optimization of the electrolyte composition	72
7.1.1. Wear test results	72
7.1.2. Optimization by Taguchi method	73
7.1.3. ANOVA for S/N ratios	75
7.1.4. Confirmation of prediction	80
7.2. Surface microstructure	81
7.2.1. The uncoated substrate	81

	0
7.2.2. The optimized sample	82
7.3. Worn Surfaces	86
7.3.1. The uncoated substrate	86
7.3.2. The optimized specimen	87
7.4. Current-voltage response	88
7.5. Chemical composition	90
7.6. Coating thickness and cross-sectional morphology	91
7.6.1. The optimized coating	91
7.7. The effect of sparking voltage	92
7.7.1. Tribology	92
7.7.2. Surface Microstructures	95
7.7.3. Worn surfaces	97
7.7.4. Thickness and cross-sectional morphology	98
7.8. The effect of sparking time	101
7.8.1. Tribology	101
7.8.2. Surface microstructures	103
7.8.3. Worn surfaces	105
7.8.4. Thickness and cross-sectional morphology	106
7.9. The effect of electrolyte agitation	110
7.9.1. Tribology	110
7.9.2. Surface morphology	112
7.9.3. Worn surfaces	114
7.9.4. Thickness and cross-sectional morphology	115
7.10. The effect of initial surface preparation	117
7.10.1. Tribology	117
7.10.2. Surface microstructures	120
7.10.3. Worn surfaces	122
7.10.4. Thickness and cross-sectional morphology	123
7.11. Effect of starch	126
7.12. Effect of heat treatment	133

7.13. Effect of simulated body fluid (SBF)	134
7.13.1. Wear test in the presence of simulated body fluid	134
7.13.2. Effect of soaking in SBF	137
7.14 Fatigue testing	139
7.15. Plasma electrolytic dual process	145

List of Tables

Title	Page
Table 1. Microstructures formed under different heat	<i>.</i>
treatments	6
Table 2. Some of the most widely used orthogonal arrays	43
Table 3. L-4 orthogonal array	44
Table 4. L-4 orthogonal array with 3 two-level factors assigned	45
Table 5. Orthogonal array L-25	69
Table 6. Results of wear test on Taguchi method electrolytes	72
Table 7. S/N ratio of wear tests on Taguchi method electrolytes	73
Table 8. Average S/N ratio for each electrolyte constituent at	74
each level	/4
Table 9. Chemical composition of the best electrolyte resulted	74
from Taguchi method	/4
Table 10. Analysis of Variance for SN ratios, using Adjusted	75
SS for Tests	73
Table 11. One-way ANOVA: S/N ratios versus NaCl	76
Table 12. One-way ANOVA: S/N ratios versus H ₂ O ₂	76
Table 13. One-way ANOVA: S/N ratios versus Starch	76
Table 14. One-way ANOVA: S/N ratios versus NaOH	77
Table 15. One-way ANOVA: S/N ratios versus Na ₂ SiO ₃	77
Table 16. wear test results on optimized specimen	80
Table 17. Comparison between the present work with other	81
similar studies	04
Table 18. Comparison of the thickness of oxide layers produced in the present study with other research works.	133
Table 19. Wear test results on the heat treated coated specimen	134

Table 20. Wear test results in the presence of simulated body	124
fluid	134
Table 21. Wear test results on the Plasma electrolytic dual	147
process	117

List of Figures

Title	Page	
Figure 1. Approximate breakdown of the USA market by alloy	2	
type, 1998	3	
Figure 2. Influence of alloying elements on phase diagrams of	Λ	
Ti alloys	4	
Figure 3. Three typical microstructures of α + β titanium alloys:	9	
a) fully lamellar, b) bi-modal, c) fully equiaxed		
Figure 4. Electrolysis of water	16	
Figure 5. Two kinds of current-voltage diagram for the		
processes of plasma electrolysis: discharge phenomena are	24	
developed a) in the near-electrode area and b) in the dielectric	24	
film on the electrode surface		
Figure 6. Schematic of EPT processing mechanism: a) plasma		
bubble on the surface of the work-piece. Single plasma bubble		
is shown for illustration only. In reality, the bubble is		
surrounded by numerous bubbles, b) shockwave production by	27	
the cooling plasma bubble, c) collapsing plasma bubble and	21	
cleaning, d) collapsing plasma bubble and creation of micro-		
crater, e) collapsing bubble deposits ions in case of coating,		
and f) increasing coating thickness with processing time		
Figure 7. Relationship between the principal physical-chemical		
processes occurring in plasma electrolysis and the basic	30	
electrode processes of classic electrolysis in the techniques of	50	
plasma electrolysis processing		
Figure 8. Schematic of typical PEO equipment	31	

Figure 9. The function I=f(U) of various electrolytes tested for PEO treatment of aluminium. Anodic polarization can lead to: 1) fast metal dissolution, 2) slow metal dissolution, 3) metal passivation in narrow voltage interval, 4) complex behavior with a wide interval of passivation, 5) slight passivation and 6) strong passivation of the metal	34
Figure 10. Typical old approach (series process)	39
Figure 11. DOE application phases: the new discipline (parallel	
process)	40
Figure 12. Total and individual factor influence distribution	50
Figure 13. Factor influence as a fraction of total influence	51
Figure 14. Calculation of total sum of squares	52
Figure 15. The prepared specimen for coating	66
Figure 16: PEO setup used in the present study	67
Figure 17. Shape and dimensions of the fatigue test specimens	70
Figure 18. Main effect plots for each constituent	78
Figure 19. Friction coefficient versus sliding distance for: a) the optimized, b) the uncoated specimen	80
Figure 20. Microstructure of the uncoated Ti-6Al-4V	81
Figure 21. Microstructure of PEO coating formed in the	82
optimized electrolyte Figure 22. Worn surface of uncoated Ti-6Al-4V; a) $35\times$, b) $400\times$	86
Figure 23. Worn surfaces of PEO coating obtained in the optimized electrolyte	87
Figure 24. The current-voltage behavior of the specimen coated in the optimized electrolyte	88
Figure 25. The current density-time behavior of the specimen coated in the optimized electrolyte	88
Figure 26. XRD pattern for the optimized specimen	90
Figure 27. The cross-section of PEO coating formed in the optimized electrolyte	91

Figure 28. The effect of sparking voltage on the friction	92
Figure 29. Effect of sparking voltage on the weight change of PEO coating	92
Figure 30. Surface microstructures of PEO coatings obtained at different sparking voltages: a) 180V, b) 230 V, c) 280 V d)	95
Figure 31. Effect of sparking voltage on the worn surfaces of coated specimens at different Voltages: a) 180V, b) 230 V, c) 280 V, d) 330 V, and e) 380 V	97
Figure 32. The effect of sparking voltage on the coating thickness	98
Figure 33. Cross-section of PEO coatings formed at different sparking voltages: a) 180 V, b) 230 V, c) 280 V, d) 330 V, e) 380 V.	99
Figure 34. The effect of sparking time on the friction coefficient of PEO coating	101
Figure 35. The effect of sparking time on the weight variation of PEO coating	101
Figure 36. Surface microstructure of PEO coatings formed at	
different sparking times: a) 5 minutes, b) 10 minutes, c) 20	103
Figure 37. Worn surfaces of PEO coatings formed at different sparking times: a) 5 minutes, b) 10 minutes, c) 20 minutes	105
Figure 38. The effect of sparking time on the coating thickness	106
Figure 39. Cross-section of PEO coatings formed at different sparking times: a) 5 minutes, b) 10 minutes, c) 20 minutes, d) the boundary between the two structural regions in the former micrograph (part c)	107
Figure 40. The effect of electrolyte agitation on the friction coefficient of PEO coating	110
Figure 41. The effect of electrolyte agitation on the weight variation of PEO coating	110
Figure 42. Surface microstructure of PEO coatings formed at different agitation regimes: a) no agitation, b) 150 rpm, c) 200 rpm; other coating conditions:	112

Figure 43. Worn surfaces of PEO coatings formed at different	111
agitation regimes: a) no agitation, b) 150 rpm, c) 200 rpm	114
Figure 44. The effect of electrolyte agitation on the coating	115
thickness	
Figure 45. Cross-sectional view of PEO coatings formed at different agitation regimes: a) no agitation, b) 150 rpm, c) 200	116
rpm	
Figure 46. The effect of initial surface preparation on the friction coefficient of PEO coating	117
Figure 47. The effect of initial surface preparation on the weight variation of PEO coating	118
Figure 48 Effect of initial surface preparation on the surface	
microstructure of coatings treated by different abrasive napers:	
a) #600, b) #800, c) #1000, d) #2000, e) #4000; other coating	120
conditions:	
Figure 49. Effect of initial surface preparation on the worn	100
surface of coatings treated by abrasive paper: a) #600, b) #800,	122
c) $\#1000$, d) $\#2000$, e) $\#4000$.	
Figure 50. The effect of initial surface preparation on the	123
coating thickness	
Figure 51. Effect of initial surface preparation on the thickness	124
of the coatings: abrasive paper a) $\#600$, b) $\#800$, c) $\#1000$, d) #2000, e) $#4000$.	124
Figure 52. Microstructure of the a) surface, and b) cross-	
section, and c) the worn surface of the specimen coated in the optimized electrolyte without starch	126
Figure 53. The friction coefficient of the specimen coated in	107
the optimized electrolyte without starch vs. sliding distance	127
Figure 54. The current-voltage behavior of the specimen coated	107
in the optimized electrolyte without starch	127
Figure 55. The current density-time behavior of the specimen	170
coated in the optimized electrolyte without starch	120
Figure 56. XRD pattern for the specimen coated without starch	128
Figure 57 The worn surfaces of the specimens after wear test	
in SBF: uncoated specimen: a) low magnification and b)	105
higher magnification; coated specimen: c) low magnification	135
and d) higher magnification	

Figure 58. Microstructure of the coated specimen after soaking in SBF a) general view, b) the region b in the image of part a,	138
c) the region c in the image of part a	
Figure 59. S-N curves for the three sets of specimens	139
Figure 60. Fatigue fracture surfaces of the uncoated substrate at different stress levels; a) general view; b) larger magnification of section b in general view; c) larger magnification of section	140
c in general view	
Figure 61. Fatigue fracture surfaces of the PEO coated specimens at different stress levels; ; a) general view; b) larger magnification of section b in general view; c) larger	141
magnification of section c in general view	
Figure 62. Fatigue fracture surfaces of the PEO coated and heat treated specimens at different stress levels; ; a) general view; b) larger magnification of section b in general view; c) larger magnification of section c in general view	142
Figure 63. Current-Voltage behavior of the cell with the	145
optimized electrolyte and Ti-6Al-4V electrodes	145
Figure 64. Current density-time behavior of the cell with the optimized electrolyte and Ti-6Al-4V electrodes	146
Figure 65. Microstructures obtained from specimens coated in	
the cell with the optimized electrolyte and Ti-6Al-4V	146
electrodes: a) anode, b) cathode	
Figure 66. The XRD pattesrn of PEDP specimens: a) anode and b) cathode	147

List of Abbreviations

Title	Page
AC	Alternative current
Adj MS	Adjusted mean of squares
Adj SS	Adjusted sum of squares
ANOVA	Analysis of variance
Bcc	Body centered cubic
CAE	Cathode arc evaporation
CVD	Chemical vapor deposition
DC	Direct current
DF	Degree of freedom
DOE	Design of experiments
EPT	Electrolytic plasma technology
Нср	Hexagonal close packed
MAO	Micro-arc oxidation
Min	Minute
MSD	Mean squared deviation
PED	Plasma
PEO	Plasma electrolytic oxidation
PES	Plasma electrolytic saturation
PET	Plasma electrolytic twins
PVD	Physical vapor deposition
QC	Quality characteristics
Rpm	Revolution per minute
S/N ratio	Signal to noise ratio
SBF	Simulated body fluid
SEM	Scanning electron microscopy
Seq. SS	Sequential sum of squares

Title	Page
S-N curve	Stress versus number of cycles curve
SS	Sum of squares
XRD	X-ray diffraction

Introduction

Ti-6Al-4V is a well-known alloy for many applications such as aerospace, automotive, and biomedical industries. Many studies has been carried out on improving the tribological behavior of the alloy via a variety of techniques such as physical vapor deposition [Ref1,Ref75, Ref119], ion implantation [Ref115], laser alloying [Ref116, Ref124], thermal oxidation [Ref140], sol-gel [Ref147] etc. one of the recently developed methods of improving tribological performance of this alloy is plasma electrolytic oxidation which has been developed rapidly in recent years. The process is a new generation of conventional anodizing which differs from the latter in applying high potentials [Ref13]. The high voltage leads to formation of a plasma envelope which appears as luminescent sparks on the surface of the anode [Ref]. The formation of plasma enhances the tribological properties of the coatings [Ref13].

Many research works studied the tribology of PEO coatings on Ti-6Al-4V and investigated the effect of porosity [Ref52], electrolyte composition [Ref105], current mode [Ref6, Ref58], sparking voltage [Ref126] and other factors on the microstructure, chemical composition, tribology and mechanical properties of PEO coatings. The main objectives of the present work were:

- □ Lowering applied voltage
- □ Simplifying the process
- □ High wear resistance

Simplifying of the process was carried out by using simple equipment and familiar, available, and inexpensive materials. All materials were abundant and the process of making the electrolytes was easy. The power source used for PEO was a simple DC source with no extra attachments. For lowering of the applied voltage, a combination of sodium chloride and sodium hydroxide was used and sodium silicate was added to the electrolyte for increasing the growth rate of the coatings.

To obtain high wear resistance, starch was added to the electrolyte and an optimum composition of the electrolyte was calculated using a statistical analysis by Taguchi method.

To evaluate the wear properties of the coatings wear tests were carried out by a pin-on-disk apparatus. Since one of the important applications of Ti-6Al-4V is production of biomedical implants, some wear tests were carried out in the presence of ringer's solution as the simulated body fluid. Results showed a better wear resistance for PEO coated alloy under dry conditions. In the presence of ringer's solution, however the uncoated alloy showed a better performance than the PEO coated alloy.

Fatigue tests showed that PEO is not a suitable method to enhance the wear properties of the alloy because of the brittle nature of the coatings and increasing the probability of fatigue crack initiation and propagation.

Section One Theory

1. Titanium and its alloys

1.1. History of Titanium

Titanium is present in the earth's crust at a level of about 0.6% and is therefore the fourth most abundant structural metal after aluminum, iron, and magnesium. The most important mineral sources of titanium are ilmenite (FeTiO₃) and rutile (TiO₂). The first suspicion of a new, unknown element presents in a dark, magnetic iron sand (ilmenite) in Cornwall (UK) was expressed in 1791 by Gregor, a clergyman and amateur mineralogist. In 1795, Klaproth, a German chemist, analyzed rutile from Hungary and identified an oxide of an unknown element, the same as the one reported by Gregor. Klaproth named the element titanium after the Titans, the powerful sons of the earth in Greek mythology [1,2].

Wilhelm Justin Kroll from Luxembourg is recognized as the father of titanium industry. In 1932, he obtained significant quantities of titanium by combining TiCl₄ with calcium. He demonstrated that titanium could be extracted commercially by reducing TiCl₄ by changing the reducing agent from calcium to magnesium at the U.S. Bureau of Mines. Today this is still the most widely used method and is known as the "Kroll process". After the Second World War, titanium-based alloys were soon categorized as main materials for