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Abstract

Mathematical Modeling of Fluid Flow and
Particle Movement in Electrostatic Precipitators
By

Mohammadreza Talaie Khoozani

A mathematical model was developed to evaluate the electrostatic.
precipitator performance and investigate the effect of various parameters on
the particle removal efficiency. This model consists of three interactive
sections, namely electrical field, gas flow and turbulence and particle
movement predictions. Two kinds of ESP single-stage and double-stage
were considered and due to ESP's configuration the governing equations
were obtained for two-dimensional case. In order to evaluate the electrical
conditions of an ESP the Maxwell's relation was used. A new model was
developed to calculate the electrical conditions of a single-stage ESP. this
model is capable of evaluating corona sheath growth and ionic current for
different values of applied voltages. The gas flow field was determined by
using the normal k-¢ turbulent model with considering electrical body force
due to presence of ions and charged particles. SIMPLER algorithm was
applied to solve the Navier-stokes, continuity, k and € equations. The

particle movement was evaluated by using two different methods of

v




Eulerian and Lagrangian. Both methods were modified for considering the
effect of particle size distribution on the ESP performance. The effect of
applied voltage, particle diameter, particle size distribution, inlet particle
concentration, configuration of ESP's channel and baffles were investigated

on the ESP performance.
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