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Abstract 

In many engineering and practical problems, the medium has a variable refractive 

index such as heating of glass, thermal protecting coating, manufacturing of 

waveguide materials, optical measurement of flam, thermal barrier coating, 

elctrochoromic windows, etc. The variation of refractive index may be a reason of 

the structure or thermal effect caused by spatial and temporal variations. 

Therefore, retrieving of temperature and refractive index distributions, that play 

important role in radiative transfer in graded index medium, is very practical. In 

the present work an inverse analysis of 1-D absorbing, emitting and scattering 

graded index medium is performed to determine the temperature and refractive 

index distribution. In the first part, a serious attention is devoted to the direct 

problem, since solving the direct problem is a basic step in all inverse algorithms. 

The conservative and non-conservative form of radiative transfer equation of 

graded index medium in general orthogonal curvilinear coordinate system are 

presented, which has not been done till now. This formulation is simplified for 1-

D case and the constant quadrature discrete ordinate method is used to solve it. 

The advantageous of presented method is its ability to model arbitrary variation of 

refractive index, while the previous similar method can only model the monotonic 

variation of refractive index. In the second part, three different inverse problems 

are solved. First, the source term (temperature distribution) is estimated through 

the knowledge of exit intensities at boundary surface by the conjugate gradient 

method. Estimation of refractive index distribution in a graded index medium by 

inverse methods through measured radiative heat transfer parameters is 

completely a novel idea and has not been done yet. Hence, in the second problem, 

the simultaneous estimation of source term and linear refractive index distribution 

is done through the knowledge of exit intensities at boundary surfaces by the 

conjugate gradient method and a two dimensional searching network approach. In 

the last case the arbitrary distribution of refractive index distribution is retrieved 

by a combination of the conjugate gradient method and Levenberg-Marquardt 

method. The measured data is radiative intensities at boundary surfaces and 

radiative heat fluxes inside the medium.  

Keywords: Graded index medium, inverse analysis, curvilinear coordinate system
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Chapter 1. Introduction 
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1.1. Introduction 

Inverse problems are the problems that consist of finding an unknown property of 

an object, or a medium, from the observation of a response of this object, or 

medium, to a probing signal [1]. In the other words, in the direct problem the 

caused are given, the effect is determined; whereas in the inverse problem the 

effect is given, the cause (or causes) is determined. Thus, the theory of inverse 

problems yields a theoretical basis for remote sensing and non-destructive 

evaluation [1]. On mathematical physics view point, the aim of solving a direct 

problem is to find the solution of the partial differential equation with proper 

boundary and/or initial conditions. However, in an inverse problem governing 

differential equation is not completely defined or some of the boundary conditions 

or initial conditions are not specified, but some additional information is 

available. Through this information, the unknown conditions and parameters 

should be determined. [2]. Inverse analysis have a lot of practical and theoretical 

usage in all branches of science and engineering such as, physics, geophysics, 

hydrology, mathematics, astronomy, heat transfer and other disciplines. Inverse 

heat transfer problems are very important and practical. For example measurement 

of temperature in a furnace is a challenging problem. Due to the high temperature, 

the traditional thermometer is useless and we have to use more advanced methods. 

One possibility is to use ultrasound. The high temperature renders the gases in the 

furnace turbulent, thus changing their acoustic properties which in turn are 

reflected in the acoustic echoes. Now the forward model consists of the 

challenging problem of describing the turbulence as a function of temperature plus 

acoustic wave propagation in the medium, and its even more challenging inverse 

counterpart of determining the temperature from acoustic observations [3]. Also, 

aerodynamic heating of space vehicles is so high during reentry in the atmosphere 

that the surface temperature of the thermal shield cannot be measured directly 

with temperature sensors. Therefore, temperature sensors are placed beneath the 

hot surface of the shield and the surface temperature is recovered by inverse 

analysis [4].  
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1.2. Difficulties in Solving Inverse Heat Transfer Problem 

Inverse heat transfer problems are classified as ill-posed problems in a 

mathematical sense, because their solution may become unstable as the 

measurements contain error. The solution of a problem should be satisfied the 

following three conditions to classify as a well-posed problem [4]. 

1. The solution must exist 

2. The solution must be unique 

3. The solution must be stable under small changes to the input 

Compared to the well posed problem, the inverse problem may have no solution, 

or have multiple solutions. The main difficulty is that the solution may not be 

stable if there is error in input data. So we need special methods and algorithms to 

stabilize the solution. But, these methods do not guarantee the correct solution. 

Even if we get a stable solution for the inverse problem, it may not be acceptable 

as it is not the solution or the problem yields multiple solutions. So care must be 

taken during solving an inverse problem and the answers should always be looked 

as suspicious. 

1.3. Classification of Inverse Problems 

There are several classifications of inverse heat transfer problems related to the 

methods, usage, etc. Some of these classes are brought briefly in following lines: 

Inverse problem can be solved as parameters estimation or as function estimation 

approach. In parameters estimation approach a finite number of parameters are to 

be determined. These parameters can be constant thermophysical properties such 

as thermal conductivity or absorption coefficient of medium. Also if some 

information is available on the functional form of the unknown quantity, the 

inverse problem is reduced to the estimation of few unknown parameters. If such 

information is not available, inverse problem become function estimation in an 

infinite dimensional space of functions. 

Inverse heat transfer can be also classified in accordance with the mode of heat 

transfer process, such as [4] 
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1. Inverse heat transfer of conduction 

2. inverse heat transfer of convection 

3. inverse heat transfer of surface radiation 

4. inverse heat transfer in participating medium 

5. inverse heat transfer of simultaneous conduction and radiation 

6. inverse heat transfer of simultaneous conduction and convection 

7. inverse heat transfer of phase change 

Another classification can be one based on the type of causal characteristic to be 

estimated. For example: 

1. Inverse heat transfer of boundary condition 

2. Inverse heat transfer of thermophysical properties 

3. Inverse heat transfer of initial condition 

4. Inverse heat transfer of source term 

5. Inverse heat transfer of geometric characteristics of a heated body 

Inverse heat transfer problems can be one, two or three dimensional. Also they 

may be linear or nonlinear. 

1.4. Inverse Radiative Heat Transfer and Graded Index Medium 

Radiative heat transfer is important when the temperature of medium and/or 

boundaries is high. In these cases this mode of heat transfer is almost dominant to 

other modes of heat transfer. Also radiative heat transfer is the only mode of heat 

transfer that does not need material medium and can transfer across the vacuum 

(as the sun heats the earth). The medium is called participating if it affects the 

intensity rays that travel through it. The effects can be classified into two groups. 

One attenuates the intensities pass the medium, and the other has augmentation 

effects. Attenuation is due to absorption and out-scattering and augmentation is a 

result of emission and in-scattering. It is obvious that the radaitive heat transfer in 

a medium depends on the properties of the medium, such as absorption 

coefficient, scattering coefficient, refractive index and so on. One of the most 

important properties is the refractive index which is the ratio of the velocity of 
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light in the vacuum to its value in the medium. In a medium with constant 

refractive index the intensity rays travel along a straight path, while in a medium 

with variable refractive index the rays travel along a curve path. In this case, if the 

medium experiences a continuous variation of refractive index, it is called graded 

index medium. The early investigations in participating media are restricted to 

constant refractive index. However, in many engineering and practical problems, 

the medium has a variable refractive index such as heating of glass, thermal 

protecting coating, manufacturing of waveguide materials, ray transporting 

through atmosphere, optical measurement of flame [5], thermal barrier coating, 

connectors, ,electrochoromic displays, sensors, bobbins circuit breaker, batteries, 

elctrochoromic windows, etc. [6]. The variation of refractive index may be as a 

result of the structure or thermal effect caused by spatial and temporal variations. 

Refractive index and its variations depend on structure, chemical composition, 

thermal treatment and conditions, etc. Mass density, molecular polarizability and 

molecular weight are some parameters that affect the refractive index. For pure 

materials, the relation between these four quantities has been presented by 

Lorenz-Lorenz relation. [7]. Among these parameters, the effect of mass density 

on refractive index is dominant. For mass density<<1 the refractive index varies 

linearly with mass density [7]. The manufacturing process also affects refractive 

index. Photo-thermo-refractive (PTR) glass is an optical material that is a 

candidate for hologram writing. After UV-exposure and thermal treatment, local 

refractive changes are seen in PTR glass. This change can be a reason of local 

chemical changes and local residual stresses [8]. A study was down by Lumeau et 

al [8] shows that among these parameters, residual stresses are the main reason of 

local decrease of refractive index. [8]. Chemical composition can be another 

reason of the variation of refractive index. Aeropolymer are porous materials with 

low refractive index of 1.2-1.3. Polymide has high refractive index of 1.66. These 

materials do not have adjustable refractive index over wide range. Xerogels is a 

poor material that its refractive index can be adjusted by controlling the pore 

fraction or embedded micro or nano particles. Lisinki et al. [9,10] showed that 

mixed silica-titania xerogels and pure titania xerogels have tunable refractive 

index over wide range of 1.2-2.1. 
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Inverse analyses in radiative transfer are very important and have a lot of practical 

applications, such as remote sensing of atmosphere properties, the prediction of 

the temperature profile in a furnace or atmosphere or flame. As already 

mentioned, the radiative heat transfer in a semitransparent graded index medium 

has a lot of practical applications. Therefore, the inverse analysys of such media 

are also practical and important. First, we discussed about the direct problem of 

radiative transfer in graded index medium, since solving direct problem is a part 

of all inverse algorithms. Then we discuss the inverse problem. 

1.4.1. Direct Problem of Radiative Transfer in Graded Index Medium 

The first idea of solving radiative transfer equation (RTE) in graded index 

medium was to divide the medium to layers and in each layer the refractive index 

has a constant value. Such method can be found in the works of Siegle and 

Spuckler [11, 12] By the same idea of dividing the layer with variable refractive 

index to sub layers with constant refractive index, Xia et al. [13] analyzed the 

thermal emission and volumetric absorption in a graded index semitransparent 

medium. More complicated situation of steady and transient coupled radiative-

conductive heat transfer in a graded index slab was studied by Yi et al. [14]. 

Curved ray tracing technique that was developed by Ben Abdolah and Dez [15-

19] is another method of modeling radiative transfer in graded index medium. 

This technique was modified and extended by other investigators. Huange et al. 

[20] using a pseudo-source adding method combined with curved ray tracing 

technique and obtained the temperature field inside an absorbing-emitting graded 

index semi-transparent slab with diffuse gray walls in the radiative equilibrium. In 

this work the variation of refractive index was assumed to be linear. This 

combination was to deduce the radiative intensities on the gray walls. They also 

extended their method to account the arbitrary variation of refractive index by 

discretization of medium and assumption of local linear approximation for 

refractive index distribution. Two kinds of sinusoidal variation of refractive index 

were considered as the case studies [5]. Xia et al. [21] obtained the non-

dimensional radiative flux and temperature distribution in a semitransparent 

absorbing, emitting graded index slab. The modes of heat transfer were radiation 


