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ABSTRACT

COMPUTER SIMULATION OF CONTINUOUS
FURNACES BY MEANS OF ZONE METHOD

BY
MOHAMMAD RAHIMI NASR

Heating of metals for further forming processes is usually done
in furnaces which are commonly known as batch or continuous
depending on the nature of the proposed forming process.
Nevertheless each material needs to be processed within a specific
temperature range which transfers it into a status of best plasticity.
Therefore, the ideal heating temperature and soaking time must be set
to the furnace based on the heating curve of the material which is
subsequently being formed.

However, the aforementioned goal is only achieved by a proper
control of the furnace which in turn calls for an accurate mathematical
modeling of the heat transfer within the furnace chamber.

This research work was devoted to present the general
mathematical model that describes the steady-state behaviour of

continuous furnaces. The proposed three dimensional radiation model
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is based on the zone method where the mathematical formulation
allows the prediction of gas temperature, by applying energy balance
to each gas zone, as well as the temperature distribution along the
walls of any furnace enclosure of specified shape and size. Based on
the aforesaid theoretical base, implementation of its application
regarding a walking-beam, a pusher type and a rotary-hearth furnaces
are illustrated and computational results are in close agreement with

the relevant experimental data found from industrial records.
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CHAPTER ONE
INTRODUCTION

The term ‘reheating furnaces  applies to those furnaces in which
heat is imparted for the purpose of rising metal temperature in such to
be suitable for further forming processes, while no chemical changes,
or change of state e¢.g. melting and/or vaporization takes place.
However depending on the nature of the proposed forming operation,
either batch type furnaces or continuous ones are used. The furnace-
temperature is practically uniform, but time dependent, throughout the
interior of the batch type furnaces, whereas in continuous ones the
charged material or stock moves along the furnace while is being
heated in different heating zones. The latter method of heating
prevents the tendency of the heat sensitive materials to form cracks.
Generally speaking, each metallic material needs to be formed within
a specific temperature range having the lower and upper limits. The
lower boundary must be at least as high as the recrystallization
temperature, but somewhat higher in order to compensate phase
transformation. The upper temperature limit is determined by excess
oxidation, coarse grain formation, or phase transformation.

The heating of a metal workpiece reduces the flow stress and
thus leads to a corresponding decrease in the force and energy

required for deformation. However, the flow stress may vary




considerably within the forming temperature range.:lIn'cﬁ)rder to keep
the stresses and forces as low as possible, hot forming is usually
started at the highest permissible temperature since cooling due to the
temperature difference between workpiece and tool is unavoidable.
However, care must be taken that the temperature is as even as
possible over the entire cross section of the billet (slug). This becomes
increasingly difficult with large cross sections and where the thermal
conductivity is poor. For example chrome, nickel and manganese
steels exhibit poor thermal conductivity accompanied by high creep
resistance. Therefore, in order to avoid damages to any of such
materials, through heating should be carried out according to its-
accurate heating curve. This in turn minimizes the induced thermal
stresses but the heating process may last several days.

Now a days it is practically established that, each material has to
be heated according to its specific heating curve, which dictates the
heating speed as well as the temperature range for the operating
furnace. In another words in any hot forming process the temperature
limits together with the soaking time are set to the preheating furnace
according to the ideal heating profile of the processed material.
Therefore, heating of a metallic workpiece in any industrial furnace,
followed by subsequent forming operation, is a precise task that can
only be fulfilled by an appropriate control of the furnace.

In this research work, the Hottel’s zone method [1] was adopted
to present the general mathematical model that describes the steady-

state behavior of continuous furnaces, and then comparison of the




