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ABSTRACT
MODULES WITH BOUNDED SPECTRA
By
ABDUL HOSSEIN DELFAN

Let R be a commutative ring with identity and let M be an R-
module. We examine the sitnation where for each prime ideal p of R
the set of all p-prime submodules of M is finite. In case R is Noetherian
and M is finitely generated, we prove that this condition is equivalent to
there eany authors (e.g., [3,6,19,24,25,28,30]). Our approach to unique
extension, being a positive integer n such tht for every prime ideal p
of R, the numver of p-prime submodules of M is less than or equal
to n. We further show that in this case, there is at most one p-prime

submodule for all but finitely many prime ideals p of R.
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CHAPTER 1
INTRODUCTION

Throughout this dissertation all rings are commutative with identity
(except for a short section in 1.3), all modules are unitary and I < R
means that I is an ideal of the ring R. Additionally, N < M means

that N is a submodule of the R-module M. In this chapter we prove

some of the preliminary results which are used in other chapters.

1.1 Some Results on Rings and Modules

Definition. If M is an R-module and N a submodule of M, (N : M)
is defined to be (N : M) ={r € R:rM C N}, obviously (N : M) is an
ideal of R.

Definition A proper submodule N of a module M over a ring R is said
to be primary if rb € N for r € R and b € M implies that either be N

or r*M C N for some positive integer n.

Lemma 1.1.1 Let M be a finitely generated R-module and N be a

submodule of M. Then % 1s a finttely generated R-module.

Proof: It is clear that % is an R-module. Suppose that {z;,z,,---,z.}

generate M, it is easy to see that {z;+ N,zo+ N,---,z,+ N} generate

M

i
Lemma 1.1.2 Let M be an R-module and N be a submodule of M.
Then Ann(3) = (N : M).




Proof: Let r € Ann(%). Then r(m + N) = N for each m + N € .
That is rm € N for each m € M. So rM C N. Therefore r € (N : M).
Now, let r € (N : M). So rM C N, that is, r(m + N) = N for each
m € M. Hence r € Ann(¥).

Lemma 1.1.3 Let M be a finitely generated R-module and I be an
tdeal of R such that /I = I. Then (IM : M) = I if and only if
Ann(M) C I.

Proof: The necessity is obvious. Assume that Ann(M) C I and let r
be ;m element in R which is contained in (IM : M). If M is generated
by n elements, then there exists y € I such that r" + y € Ann(M), by
8, p. 50, Theorem 75]. Accordingly r™ € I and therefore (IM : M) C
VI = I. Now, we easily see that (IM : M) = I.

Lemma 1.1.4 If M is a finitely generated R-module and N is a sub-
module of M such that (N : M) = p, where p is a prime ideal of R,

then (p¥% : M) =p.

Proof: By Lemma 1.1.1 % is a finitely generated R-module. By
Lemma 1.1.2 Ann(¥) = p. Then by Lemma 1.1.3, (p¥ : M) =p.

Suppose that S is a multiplicatively closed subset in R.
Lemma 1.1.5>Let M be an R-module and N be a submodule of M.

Then every element of S™'N has the form ® 5, such that b € N and
sES.

Proof: We know that every element of S™!N has the form En: f%b;
1 1

where r; € ££,5; € S and b; € N. Lets—llI 15i and 5; = 117
J¢=
then we have g
inb _ iz TiSibs

i1 8¢ S




If we set b = }":r,-s_,-, then b€ N and i gi_b,-=§eS‘1N.
i=1"

1=1
Lemma 1.1.6 Let M be an R-module and N be a submodule of M
which ts generated by {z1,z2,---,2,}. Then S™IN 15 an S~ R-submodule
of ST'M which is generated by {%,%, .., %},

Proof: It is clear.

Lemma 1.1.7 Let N and K be two submodules of an R-module M.
Then

i) STYNNK)=S"'NnS'K

1) STY (N : M) C (S7IN: 571 M)

) SN+ K)=S"'N+S°'K

iv) STIM/S"IN ~ S~}(M/N)

Proof: See [2].

Lemma 1.1.8 Let M be an R-module and N be a submodule of M. If
S™IN #£S7IM, then (N: M)N S = ¢.

Proof: Suppose that r € (N : M) N S. We know that every element
of S™IM is of the form ™ where m € M and s € S. So let 2 € S~!M.
Then rs € S and rm € N. Hence ® = ¢ §~!'N. That is, ™M C

S~IN. Note that S™!N C S~ !M. Hence S™'M = S~!N which is a

contradiction.

Lemma 1.1.9 Let M be a finitely generated R-module such that S™1M =
0. Then there exists an element s € S such that sM = 0.

Proof: Let M = Rmy + Rmy + -+ + Rmy,. Since S™'M =0, ™ =
Tt =...=%2 =0. So we can find t:,tz,"',tn € S such that t;m; =

tomg = =t,m, = 0. If we set s = ;5 ---¢,, then we are done.




Lemma 1.1.10 Let M be a finitely generated R-module and N be a
submodule of M. Then S™'M # S™'N if and only if (N : M)nS = ¢.

Proof: First suppose that (N : M) NS = ¢, we show that S~1M +#
STIN.HS™'M = SN, then =¥ = 0 and by Lemma 1.1.7 S~}(M/N) =
0. By Lemma 1.1.9 there exists an element s € S such that s(%) = 0.
That is s € Ann(¥) = (N : M). Then s € (N : M) N S. That is,
(N : M)NS # ¢ which is a contradiction so S™!M # S~!N. Conversely
suppose that S™'M # S™IN then by Lemma 1.1.8 (N : M) N § = ¢.

Lemma 1.1.11 Let R be an integral domain and N be a primary sub-

module of the R-module M. If S™*M = S~IN, then (N : M) N S # ¢.

Proof: Let m € M\N. So 2 € S7'M = S~!N and hence there
exist s € S and n € N such that = 2. So there exists t € S
such that t(sm — n) = 0. That is tsm = tn € N and since N is a
primary submodule of M then there exists a positive integer k such

that (ts)*M C N, that is, (ts)* € (N : M) N S. So (N : M) NS # ¢.

Proposition 1.1.12 Let M be an R-module and S be a multiplicatively
closed subset of R. Then the S™'R-modules S™'M and ST'R®r M
are isomorphic, more precisely, there ezists a unique tsomorphism f :
ST'R®r M — S7T'M which f((¢)®m) = = for alla € Rm e M

and s€ S.
Proof: See [2].

Proposition 1.1.13 Let M be an R-module, R be a domain and K be
its field of fractions of R. Then E
i) KM ~ KM




i1) The torsion submodule of M, T is the kernel of the mapping f :
mr——1@mof M into K@ M.

Proof: i) In the previous proposition let S = R — {0}.

ii) Note that f is an R-module homomorphism. Let m € Kerf.
Then f(m) = 0so 1®m = 0 and by (i) 2 = 0. So there exists
s € R — {0} such that sm = 0. Thus m € T, the torsion submodule of
M.

Now let m € T. ‘Then there exists r € R — {0} such that rm = 0.
So * = 0. Then by (i) 1 ® rm = 0. That is, f(rm) = 0. Since
f(m) € K®M and K®M is an K-module and + € K then 1.rf(m) =0,
that is f(m) = 0. So m € kerf. Hence kerf = T.

Now we prove some results on vector spaces which are used in the

other chapters.

Lemma 1.1.14 Let V be a finite-dimensional vector space over the

finite field F. Then V is finite.

Proof: Since V is a finite dimensional vector space, there exist By, 82, -+, 0n €
V such that {81,082, -,Bn} is a basis of V.. For each z € V we can find
b1, by, ,b, € F such that

I=b1ﬂ1+b2ﬂ2+"'+bnﬁn~

Since F is finite, there exist finitely many choices for each b;. So there

exist finitely many choices for z and, that is, V is a finite vector space.

A consequence of Lemma 1.1.14 is that if M is a finitely generated

module over a finite ring R, then M is finite.




Corollary 1.1.15 Every finite-dimensional vector space over a finite

field has finitely many subspaces.
Proof: It is clear.

Lemma 1.1.16 Let F be a field and V be a vector space over F with
linearly independent elements z,y. Then {F(z+cy) :c € F} is a family
of one-dimensional subspaces of V such that F(z + cy) # F(z +dy) for
allc#diinF.

Proof: First we show that F(z + cy) is a subspace of V for each
c € F. Let a = fi(z + cy) and 8 = fg(.’l} + cy) be two elements of
F(z + cy) where fy,f; € F. Then for each g € F,a + g8 = filz +
cy) +gfa2(z +cy) = (fi + 9f2)(z + cy) € F(z + cy). Now we show that
F(z+cy) # F(z+dy) forallc# din F. If F(z+cy) = F(z+dy), then
since z+cy € F(z+cy),z+cy € F(z +dy). So there exists a € F such
that z + cy = a(z + dy) = az + ady. That is, (1 — a)z + (¢ — ad)y = 0.
Since z and y are linearly independent elements of V', then ¢ = 1 and

d = ¢ which is a contradiction. Hence F(z + cy) # F(z + dy).

Corollary 1.1.17 Let V be a vector space over a field F, then V has

not any non-zero proper subspace if and only if dimV = 1.

Proof: First suppose that dimV = 1 and W is a proper subspace of
V. Then dimW < 1. That is dimW =0 andso W =0.

Conversely suppose that V has not any non-zero proper subspace.
We suow thab dend” = 10 1T dimV £ 1, then by Lenuna 1.1.16 V lhas a

family of one-dimensional subspaces and it is a contradiction.

Corollary 1.1.18 Let V be a finite-dimensional vector space over an




infinite field F. Then V has some infinite subspaces if and only if
dimV > 1.

Proof: It follows by Lemma 1.1.16.

Definition A ring R is said to be uniformly infinite if R/p is an infinite
field for every maximal ideal p of R.

For example F[z] is a uniformly infinite ring for every infinite field

F.

Definition The module M is called a multiplication module provided
that for each submodule N of M there exists an ideal I of R such that
N =1IM.

Lemma 1.1.19 An R-module M is a multiplication module if and only
if for each element m in M there exists an ideal I of R such that Rm =

IM.

Proof: The necessity is clear.

Conversely, suppose that for each element m € M there exists an
ideal I such that Rm = IM. Let N be a submodule of M. For each
z € N there exists an ideal I, such that Rz = M. Let I = ¥ I,.

ZEN

Then N = IM. It follows that M is a multiplication module.
Lemma 1.1.20 Every cyclic R-module is multiplication.

Proof: Let M be a cyclic R-module. Obviously M ~ R/I for some
ideal I of R. So for every submodule N of M, we have N ~ J/I for
some ideal J containing L. Since J/I = J(R/I), we have N = JM.

Lemma 1.1.21 (Nakayama) If J 1s 'ian tdeal of R, then the following

conditions are equivalent.




i) J s contained in every mazimal ideal of R.

1) 1 — 7 is a unit for every j € J.

1#5) If M is a finitely generated R-module such that JM = M, then
M =0.

iv) If N is a submodule of a finitely generated R-module such that
M=JM+ N, then M = N.

Proof: See|2].
Let R be a local ring, m its maximal ideal, K = R/m, its residue
field. Let M be a finitely generated R-module. M/mM is annihilated

by m and hence is naturally an %—module, that is a k-vector space.

Lemma 1.1.22 Let z;(1 <1 < n) be the elements of M whose tmages

tn —7%—4 form a basis of this vector space. Then z!s generate M.

Proof: See[2].

Lemma 1.1.23 Let p be a prime ideal of R and M be a cyclic R-

module. Then M, is cyclic.

Proof: Suppose that M =< m >. Let £ € M,. Then there exists

r € R such that z = rm. Sof:%:

@ |4

.Z. Hence M, is a cyclic

R,-module which is generated by T.

Lemma 1.1.24 let ay,a,,---,a, be tdeals of R and let p be a prime

ideal containing Na;. Then a; C p for some 1 € {1,2,3,---,n}.
Proof: See[s).

Proposition 1.1.25 Let p be a prinie ideal of R and ay,a,- - ,a, be

itdeals of R. Then the following are equivalent.




1) Na; Cp
i) Iia; C p
i) 35 € {1,2,--,n},a; Cp

Proof: See[17].

Definition An ideal a is said to be irreducible if a = bn¢, where b and

c are ideals of R then eithera=bora =c.

Lemma 1.1.26 In a Noetherian ring R, every ideal is a finite inter-

section of irreducible tdeals.

Proof: Suppose not, then the set of ideals in R for which the lemma
is false is not empty and hence has a maximal element a. Since a is
reducible, we have a = b N ¢ where b D a and ¢ D a. Hence each of b
and c is a finite intersection of irreducible ideals and therefore so is a,

which is a contradiction.

Lemma 1.1.27 In a Noetherian ring, every trreducible ideal 1s pri-

mary.
Proof: See[2].

Lemma 1.1.28 In a Noetherian ring R, every tdeal has a primary

decomposition.
Proof: See[2].

Lemma 1.1.29 In a Noetherian ring R, every ideal I contains a power

of its radical.

Proof: See[2].




Lemma 1.1.30 Let M be a finite R-module and let a = Ann(M).
Then & is a finite ring.

Proof: Suppose that M = {m;,m,,---,m;}. Then a = Ann(m,) N
Ann(my) N -+ N Ann(my) = N5, Ann(m,). Suppose that £ is an

infinite ring. We know that the kernel of the homomorphism f of R in

to Ann?‘Ml) ® A,m?m) &-- 'GBW}(ZM—) is @ = Ann(M). So £ is embedded in
#@@‘ . -ee/mfm—k). Therefore, there exists 7 € {1,2,---,n} such that
E;J'z(;f)‘ is infinite. But Z%m.-) ~ Rm,; and since Rm; is a submodule of
the finite module M, this is a contradiction.

Lemma 1.1.31 Let a be an ideal of the Noetherian ring R such that

% ts a finite ring for each prime ideal p O a. Then % 15 a finite ring.

Proof: We know that in a Noetherian ring R, every ideal has a primary

decomposition. So there exist primary ideals @;(1 < i < n) such that

=1 VQi = N2, pi, where pis(1 < 1 < n) are prime ideals of R. By

a = ., Q:. Suppose that Q; is a p;-primary. Then ¢ = NL,Q; C

lemma 1.1.29 the ideal a contains a power of its radical. Suppose that
(Va)™ C a where m € Z, then (N1, )™ C a so ([IL;p:)™ C a and
that is [T, p* C e C N, pi. Without lqse of generality we can assume
that gi1g2+-qx Ca C g NgaN---N gy where ¢; is prime ideal for each
1€ {1,2,---,k}.

Now consider the chain R D ¢1 2 q142 2 19243 2 -+ 2 q142- - g
and note that (¢1¢2--- ¢i—1)/(q192 - - - ¢) is a finitely generated %-module
for each 1 < 7 < k. Since % is a finite fleld, (¢192," -+, ¢i=1)/(q192 - - - ¢;) is
a finite %—module. Since qﬁl and _I- are finite and qﬁl ~ (R/q192)/(q1/q142), %
is finite because 5
R R/qq R

= X [—1.
|‘1192 l Q1/Q1(12 lfh I
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