IN THE NAME OF ALLAH

MODULES WITH BOUNDED SPECTRA

BY

ABDUL HOSSEIN DELFAN

THESIS

SUBMITTED TO THE SCHOOL OF GRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE (M.Sc.)

IN

PURE MATHEMATICS

SHIRAZ UNIVERSITY SHIRAZ, IRAN

EVALUATED AND APPROVED BY THE THESIS COMMITTEE AS: EXCELLENT

SHARIF, H., Ph.D., PROF. OF MATH.

(CHAIRMAN)

ERSHAD, M., Ph.D., ASSISTANT. PROF.

OF MATH.

HAKIM HASHEMI, M., Ph.D., ASSISTANT. PROF. OF MATH.

September 2000

41114

TO:

The callous hands of my father

The separation endured my mother

and the pains they suffered together

that of which I am still unaware

ACKNOWLEDGMENT

I would like to express my thanks to Professor H. Sharif whose invaluable comments and suggestions made the completion of this thesis possible. I am also grateful to Dr. M. Ershad and Dr. M. Hamkim Hashemi who revised the text.

Also, I appreciate Miss Chaboki for typing the thesis. Finally I appreciate my loving parents for their lasting supports.

ABSTRACT MODULES WITH BOUNDED SPECTRA

By

ABDUL HOSSEIN DELFAN

Let R be a commutative ring with identity and let M be an R-module. We examine the situation where for each prime ideal p of R the set of all p-prime submodules of M is finite. In case R is Noetherian and M is finitely generated, we prove that this condition is equivalent to there eany authors (e.g., [3,6,19,24,25,28,30]). Our approach to unique extension, being a positive integer n such that for every prime ideal p of R, the number of p-prime submodules of M is less than or equal to n. We further show that in this case, there is at most one p-prime submodule for all but finitely many prime ideals p of R.

TABLE OF CONTENTS

CONTENT	·	PAGE
CHAPTER 1.	INTRODUCTION	1
	1.1. Some Results on Rings and Modules	
	Modules	1
	1.2. Some Properties of Uniform	
	Modules	11
	1.3. Artin-Rees Property	13
CHAPTER 2.	PRIME SUBMODULES	15
	2.1. Basic Results on Prime	
	Submodules	16
	2.2. Prime Submodules of $S^{-1}M$	22
	2.3. Torsion Submodule of $\frac{M}{pM}$	25
CHAPTER 3.	MODULES WITH	
	BOUNDED SPECTRA	30
	3.1. Zariski-Bounded Modules	30
	3.2. Main Theorems	36
CHAPTER 4.	SOME EXAMPLES OF	
	ZARISKI-BOUNDED MODULES	44
	4.1. Some Examples of	
REFERENCES	Zariski-bounded Modules	44
ABSTRACT A	ND TITLE PAGE IN PERSIAN	

CHAPTER 1 INTRODUCTION

Throughout this dissertation all rings are commutative with identity (except for a short section in 1.3), all modules are unitary and $I \triangleleft R$ means that I is an ideal of the ring R. Additionally, $N \leq M$ means that N is a submodule of the R-module M. In this chapter we prove some of the preliminary results which are used in other chapters.

1.1 Some Results on Rings and Modules

Definition. If M is an R-module and N a submodule of M, (N:M) is defined to be $(N:M) = \{r \in R : rM \subseteq N\}$, obviously (N:M) is an ideal of R.

Definition A proper submodule N of a module M over a ring R is said to be primary if $rb \in N$ for $r \in R$ and $b \in M$ implies that either $b \in N$ or $r^nM \subseteq N$ for some positive integer n.

Lemma 1.1.1 Let M be a finitely generated R-module and N be a submodule of M. Then $\frac{M}{N}$ is a finitely generated R-module.

Proof: It is clear that $\frac{M}{N}$ is an R-module. Suppose that $\{x_1, x_2, \dots, x_n\}$ generate M, it is easy to see that $\{x_1 + N, x_2 + N, \dots, x_n + N\}$ generate $\frac{M}{N}$.

Lemma 1.1.2 Let M be an R-module and N be a submodule of M.

Then $Ann(\frac{M}{N}) = (N:M)$.

Proof: Let $r \in Ann(\frac{M}{N})$. Then r(m+N) = N for each $m+N \in \frac{M}{N}$. That is $rm \in N$ for each $m \in M$. So $rM \subseteq N$. Therefore $r \in (N:M)$. Now, let $r \in (N:M)$. So $rM \subseteq N$, that is, r(m+N) = N for each $m \in M$. Hence $r \in Ann(\frac{M}{N})$.

Lemma 1.1.3 Let M be a finitely generated R-module and I be an ideal of R such that $\sqrt{I} = I$. Then (IM : M) = I if and only if $Ann(M) \subseteq I$.

Proof: The necessity is obvious. Assume that $Ann(M) \subseteq I$ and let r be an element in R which is contained in (IM:M). If M is generated by n elements, then there exists $y \in I$ such that $r^n + y \in Ann(M)$, by [8, p. 50, Theorem 75]. Accordingly $r^n \in I$ and therefore $(IM:M) \subseteq \sqrt{I} = I$. Now, we easily see that (IM:M) = I.

Lemma 1.1.4 If M is a finitely generated R-module and N is a submodule of M such that (N:M)=p, where p is a prime ideal of R, then $(p\frac{M}{N}:\frac{M}{N})=p$.

Proof: By Lemma 1.1.1 $\frac{M}{N}$ is a finitely generated *R*-module. By Lemma 1.1.2 $Ann(\frac{M}{N}) = p$. Then by Lemma 1.1.3, $(p\frac{M}{N}: \frac{M}{N}) = p$.

Suppose that S is a multiplicatively closed subset in R.

Lemma 1.1.5 Let M be an R-module and N be a submodule of M. Then every element of $S^{-1}N$ has the form $\frac{b}{s}$, such that $b \in N$ and $s \in S$.

Proof: We know that every element of $S^{-1}N$ has the form $\sum_{i=1}^{n} \frac{r_i}{s_i} b_i$ where $r_i \in R$, $s_i \in S$ and $b_i \in N$. Let $s = \prod_{i=1}^{n} s_i$ and $\overline{s_i} = \prod_{\substack{j=1 \ j \neq i}}^{n} s_j$. then we have

$$\sum_{i=1}^{n} \frac{r_i}{s_i} b_i = \frac{\sum_{i=1}^{n} r_i \overline{s_i} b_i}{s}$$

If we set $b = \sum_{i=1}^{n} r_i \overline{s_i}$, then $b \in N$ and $\sum_{i=1}^{n} \frac{r_i}{s_i} b_i = \frac{b}{s} \in S^{-1}N$.

Lemma 1.1.6 Let M be an R-module and N be a submodule of M which is generated by $\{x_1, x_2, \dots, x_n\}$. Then $S^{-1}N$ is an $S^{-1}R$ -submodule of $S^{-1}M$ which is generated by $\{\frac{x_1}{1}, \frac{x_2}{1}, \dots, \frac{x_n}{1}\}$.

Proof: It is clear.

Lemma 1.1.7 Let N and K be two submodules of an R-module M.

Then

i)
$$S^{-1}(N \cap K) = S^{-1}N \cap S^{-1}K$$

$$ii) S^{-1}(N:M) \subseteq (S^{-1}N:S^{-1}M)$$

iii)
$$S^{-1}(N+K) = S^{-1}N + S^{-1}K$$

iv)
$$S^{-1}M/S^{-1}N \simeq S^{-1}(M/N)$$

Proof: See [2].

Lemma 1.1.8 Let M be an R-module and N be a submodule of M. If $S^{-1}N \neq S^{-1}M$, then $(N:M) \cap S = \phi$.

Proof: Suppose that $r \in (N:M) \cap S$. We know that every element of $S^{-1}M$ is of the form $\frac{m}{s}$ where $m \in M$ and $s \in S$. So let $\frac{m}{s} \in S^{-1}M$. Then $rs \in S$ and $rm \in N$. Hence $\frac{m}{s} = \frac{rm}{rs} \in S^{-1}N$. That is, $S^{-1}M \subseteq S^{-1}N$. Note that $S^{-1}N \subseteq S^{-1}M$. Hence $S^{-1}M = S^{-1}N$ which is a contradiction.

Lemma 1.1.9 Let M be a finitely generated R-module such that $S^{-1}M = 0$. Then there exists an element $s \in S$ such that sM = 0.

Proof: Let $M=Rm_1+Rm_2+\cdots+Rm_n$. Since $S^{-1}M=0$, $\frac{m_1}{1}=\frac{m_2}{1}=\cdots=\frac{m_n}{1}=0$. So we can find $t_1,t_2,\cdots,t_n\in S$ such that $t_1m_1=t_2m_2=\cdots=t_nm_n=0$. If we set $s=t_1t_2\cdots t_n$, then we are done.

Lemma 1.1.10 Let M be a finitely generated R-module and N be a submodule of M. Then $S^{-1}M \neq S^{-1}N$ if and only if $(N:M) \cap S = \phi$.

Proof: First suppose that $(N:M) \cap S = \phi$, we show that $S^{-1}M \neq S^{-1}N$. If $S^{-1}M = S^{-1}N$, then $\frac{S^{-1}M}{S^{-1}N} = 0$ and by Lemma 1.1.7 $S^{-1}(M/N) = 0$. By Lemma 1.1.9 there exists an element $s \in S$ such that $s(\frac{M}{N}) = 0$. That is $s \in Ann(\frac{M}{N}) = (N:M)$. Then $s \in (N:M) \cap S$. That is, $(N:M) \cap S \neq \phi$ which is a contradiction so $S^{-1}M \neq S^{-1}N$. Conversely suppose that $S^{-1}M \neq S^{-1}N$ then by Lemma 1.1.8 $(N:M) \cap S = \phi$.

Lemma 1.1.11 Let R be an integral domain and N be a primary submodule of the R-module M. If $S^{-1}M = S^{-1}N$, then $(N:M) \cap S \neq \phi$.

Proof: Let $m \in M \setminus N$. So $\frac{m}{1} \in S^{-1}M = S^{-1}N$ and hence there exist $s \in S$ and $n \in N$ such that $\frac{m}{1} = \frac{n}{s}$. So there exists $t \in S$ such that t(sm-n) = 0. That is $tsm = tn \in N$ and since N is a primary submodule of M then there exists a positive integer k such that $(ts)^k M \subseteq N$, that is, $(ts)^k \in (N:M) \cap S$. So $(N:M) \cap S \neq \phi$.

Proposition 1.1.12 Let M be an R-module and S be a multiplicatively closed subset of R. Then the $S^{-1}R$ -modules $S^{-1}M$ and $S^{-1}R \otimes_R M$ are isomorphic, more precisely, there exists a unique isomorphism $f: S^{-1}R \otimes_R M \to S^{-1}M$ which $f((\frac{a}{s}) \otimes m) = \frac{am}{s}$ for all $a \in R, m \in M$ and $s \in S$.

Proof: See [2].

Proposition 1.1.13 Let M be an R-module, R be a domain and K be its field of fractions of R. Then

i)
$$K \otimes M \simeq KM$$

ii) The torsion submodule of M,T is the kernel of the mapping $f: m \longmapsto 1 \otimes m$ of M into $K \otimes M$.

Proof: i) In the previous proposition let $S = R - \{0\}$.

ii) Note that f is an R-module homomorphism. Let $m \in Kerf$. Then f(m) = 0 so $1 \otimes m = 0$ and by (i) $\frac{m}{1} = 0$. So there exists $s \in R - \{0\}$ such that sm = 0. Thus $m \in T$, the torsion submodule of M.

Now let $m \in T$. Then there exists $r \in R - \{0\}$ such that rm = 0. So $\frac{rm}{1} = 0$. Then by (i) $1 \otimes rm = 0$. That is, f(rm) = 0. Since $f(m) \in K \otimes M$ and $K \otimes M$ is an K-module and $\frac{1}{r} \in K$ then $\frac{1}{r} \cdot rf(m) = 0$, that is f(m) = 0. So $m \in kerf$. Hence kerf = T.

Now we prove some results on vector spaces which are used in the other chapters.

Lemma 1.1.14 Let V be a finite-dimensional vector space over the finite field F. Then V is finite.

Proof: Since V is a finite dimensional vector space, there exist $\beta_1, \beta_2, \dots, \beta_n \in V$ such that $\{\beta_1, \beta_2, \dots, \beta_n\}$ is a basis of V. For each $x \in V$ we can find $b_1, b_2, \dots, b_n \in F$ such that

$$x = b_1\beta_1 + b_2\beta_2 + \cdots + b_n\beta_n.$$

Since F is finite, there exist finitely many choices for each b_i . So there exist finitely many choices for x and, that is, V is a finite vector space.

A consequence of Lemma 1.1.14 is that if M is a finitely generated module over a finite ring R, then M is finite.

Corollary 1.1.15 Every finite-dimensional vector space over a finite field has finitely many subspaces.

Proof: It is clear.

Lemma 1.1.16 Let F be a field and V be a vector space over F with linearly independent elements x, y. Then $\{F(x+cy) : c \in F\}$ is a family of one-dimensional subspaces of V such that $F(x+cy) \neq F(x+dy)$ for all $c \neq d$ in F.

Proof: First we show that F(x+cy) is a subspace of V for each $c \in F$. Let $\alpha = f_1(x+cy)$ and $\beta = f_2(x+cy)$ be two elements of F(x+cy) where $f_1, f_2 \in F$. Then for each $g \in F, \alpha + g\beta = f_1(x+cy) + gf_2(x+cy) = (f_1+gf_2)(x+cy) \in F(x+cy)$. Now we show that $F(x+cy) \neq F(x+dy)$ for all $c \neq d$ in F. If F(x+cy) = F(x+dy), then since $x+cy \in F(x+cy), x+cy \in F(x+dy)$. So there exists $a \in F$ such that x+cy=a(x+dy)=ax+ady. That is, (1-a)x+(c-ad)y=0. Since x and y are linearly independent elements of V, then a=1 and d=c which is a contradiction. Hence $F(x+cy) \neq F(x+dy)$.

Corollary 1.1.17 Let V be a vector space over a field F, then V has not any non-zero proper subspace if and only if dimV = 1.

Proof: First suppose that dimV = 1 and W is a proper subspace of V. Then dimW < 1. That is dimW = 0 and so W = 0.

Conversely suppose that V has not any non-zero proper subspace. We show that dimV=1. If $dimV\neq 1$, then by Lemma 1.1.16 V has a family of one-dimensional subspaces and it is a contradiction.

Corollary 1.1.18 Let V be a finite-dimensional vector space over an

infinite field F. Then V has some infinite subspaces if and only if dimV > 1.

Proof: It follows by Lemma 1.1.16.

Definition A ring R is said to be uniformly infinite if R/p is an infinite field for every maximal ideal p of R.

For example F[x] is a uniformly infinite ring for every infinite field F.

Definition The module M is called a multiplication module provided that for each submodule N of M there exists an ideal I of R such that N = IM.

Lemma 1.1.19 An R-module M is a multiplication module if and only if for each element m in M there exists an ideal I of R such that Rm = IM.

Proof: The necessity is clear.

Conversely, suppose that for each element $m \in M$ there exists an ideal I such that Rm = IM. Let N be a submodule of M. For each $x \in N$ there exists an ideal I_x such that $Rx = I_xM$. Let $I = \sum_{x \in N} I_x$. Then N = IM. It follows that M is a multiplication module.

Lemma 1.1.20 Every cyclic R-module is multiplication.

Proof: Let M be a cyclic R-module. Obviously $M \simeq R/I$ for some ideal I of R. So for every submodule N of M, we have $N \simeq J/I$ for some ideal J containing I. Since J/I = J(R/I), we have N = JM.

Lemma 1.1.21 (Nakayama) If J is an ideal of R, then the following conditions are equivalent.

- i) I is contained in every maximal ideal of R.
- ii) 1-j is a unit for every $j \in J$.
- iii) If M is a finitely generated R-module such that JM = M, then M = 0.
- iv) If N is a submodule of a finitely generated R-module such that M = JM + N, then M = N.

Proof: See[2].

Let R be a local ring, m its maximal ideal, k = R/m, its residue field. Let M be a finitely generated R-module. M/mM is annihilated by m and hence is naturally an $\frac{R}{m}$ -module, that is a k-vector space.

Lemma 1.1.22 Let $x_i (1 \le i \le n)$ be the elements of M whose images in $\frac{M}{mM}$ form a basis of this vector space. Then $x_i's$ generate M.

Proof: See[2].

Lemma 1.1.23 Let p be a prime ideal of R and M be a cyclic Rmodule. Then M_p is cyclic.

Proof: Suppose that M=< m>. Let $\frac{x}{s}\in M_p$. Then there exists $r\in R$ such that x=rm. So $\frac{x}{s}=\frac{rm}{s}=\frac{r}{s}\cdot\frac{m}{1}$. Hence M_p is a cyclic R_p -module which is generated by $\frac{m}{1}$.

Lemma 1.1.24 let a_1, a_2, \dots, a_n be ideals of R and let p be a prime ideal containing $\cap a_i$. Then $a_i \subseteq p$ for some $i \in \{1, 2, 3, \dots, n\}$.

Proof: See[2].

Proposition 1.1.25 Let p be a prime ideal of R and a_1, a, \dots, a_n be ideals of R. Then the following are equivalent.

 $i) \cap a_i \subseteq p$

 $ii) \Pi_i a_i \subseteq p$

 $iii) \exists j \in \{1, 2, \cdots, n\}, a_j \subseteq p$

Proof: See[17].

Definition An ideal a is said to be irreducible if $a = b \cap c$, where b and c are ideals of R then either a = b or a = c.

Lemma 1.1.26 In a Noetherian ring R, every ideal is a finite intersection of irreducible ideals.

Proof: Suppose not, then the set of ideals in R for which the lemma is false is not empty and hence has a maximal element a. Since a is reducible, we have $a = b \cap c$ where $b \supset a$ and $c \supset a$. Hence each of b and c is a finite intersection of irreducible ideals and therefore so is a, which is a contradiction.

Lemma 1.1.27 In a Noetherian ring, every irreducible ideal is primary.

Proof: See[2].

Lemma 1.1.28 In a Noetherian ring R, every ideal has a primary decomposition.

Proof: See[2].

Lemma 1.1.29 In a Noetherian ring R, every ideal I contains a power of its radical.

Proof: See[2].

Lemma 1.1.30 Let M be a finite R-module and let a = Ann(M). Then $\frac{R}{a}$ is a finite ring.

Proof: Suppose that $M = \{m_1, m_2, \dots, m_k\}$. Then $a = Ann(m_1) \cap Ann(m_2) \cap \dots \cap Ann(m_k) = \bigcap_{i=1}^k Ann(m_i)$. Suppose that $\frac{R}{a}$ is an infinite ring. We know that the kernel of the homomorphism f of R in to $\frac{R}{Ann(M_1)} \oplus \frac{R}{Ann(m_2)} \oplus \dots \oplus \frac{R}{Ann(m_k)}$ is a = Ann(M). So $\frac{R}{a}$ is embedded in $\frac{R}{Ann(m_1)} \oplus \dots \oplus \frac{R}{Ann(m_k)}$. Therefore, there exists $i \in \{1, 2, \dots, n\}$ such that $\frac{R}{Ann(m_i)}$ is infinite. But $\frac{R}{Ann(m_i)} \cong Rm_i$ and since Rm_i is a submodule of the finite module M, this is a contradiction.

Lemma 1.1.31 Let a be an ideal of the Noetherian ring R such that $\frac{R}{p}$ is a finite ring for each prime ideal $p \supseteq a$. Then $\frac{R}{a}$ is a finite ring.

Proof: We know that in a Noetherian ring R, every ideal has a primary decomposition. So there exist primary ideals $Q_i (1 \le i \le n)$ such that $a = \bigcap_{i=1}^n Q_i$. Suppose that Q_i is a p_i -primary. Then $a = \bigcap_{i=1}^n Q_i \subseteq \bigcap_{i=1}^n \sqrt{Q_i} = \bigcap_{i=1}^n p_i$, where $p_i^l s (1 \le i \le n)$ are prime ideals of R. By lemma 1.1.29 the ideal a contains a power of its radical. Suppose that $(\sqrt{a})^m \subseteq a$ where $m \in Z$, then $(\bigcap_{i=1}^n p_i)^m \subseteq a$ so $(\prod_{i=1}^n p_i)^m \subseteq a$ and that is $\prod_{i=1}^n p_i^m \subseteq a \subseteq \bigcap_{i=1}^n p_i$. Without lose of generality we can assume that $q_1 q_2 \cdots q_k \subseteq a \subseteq q_1 \cap q_2 \cap \cdots \cap q_k$ where q_i is prime ideal for each $i \in \{1, 2, \cdots, k\}$.

Now consider the chain $R\supseteq q_1\supseteq q_1q_2\supseteq q_1q_2q_3\supseteq\cdots\supseteq q_1q_2\cdots q_k$ and note that $(q_1q_2\cdots q_{i-1})/(q_1q_2\cdots q_i)$ is a finitely generated $\frac{R}{q_i}$ -module for each $1\le i\le k$. Since $\frac{R}{q_i}$ is a finite field, $(q_1q_2,\cdots,q_{i-1})/(q_1q_2\cdots q_i)$ is a finite $\frac{R}{q_i}$ -module. Since $\frac{R}{q_1}$ and $\frac{q_1}{q_1q_2}$ are finite and $\frac{R}{q_1}\simeq (R/q_1q_2)/(q_1/q_1q_2), \frac{R}{q_1q_2}$ is finite because

$$|rac{R}{q_1q_2}|=|rac{R/q_1q_2}{q_1/q_1q_2}| imes|rac{R}{q_1}|.$$