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Abstract

L P. Belluce and S. Sessa studied stable topology and pure ideals in the framework
of MV-algebras.

In 1998 Peter Héjek introduced the variety of BL-algebras and showed that the variety

of MV-algebras actually is a subvariety of the variety of Bl-algebras. Thus it makes

« SR

sénse to generalize the notion of stable topology to BL-algebras. But in fact since
the multiplication (®) is a fundamental operation and filters are basic notions in BL-
algebras defined in terms of ®, we prefer to present stable topology based on filters.
We also prove some more theorems regarding different properties of this topology on

BL-algebras.

This thesis consists of three sections. In the first section we state and review notions of

MV-algebra, ideals, prime spectrum, stable topology and pure ideals for MV-algebras.
In the second section we recall the definition of a BL-algebra A, a filter F', a deductive
system and Spec(A) with more preliminary facts that we need in the sequel. In the
third section we define F' — topology which is actually the same as spectral topology -
but in terms of filters and introduce the stable topology on Spec(A4). We show that
the topological space Spec(A) with the stable topology is compact but not Tp.

We define pure filters of A and prove some important results. In fact let Maz(A) be
the set of all maximal filters of A. We consider the topology induced by F'—topology
on Maxz(A) and show that F — topology and stable topology coincide on subspace
Maz(A). We show that pure filters of A are in one to one correspondence with closed
subsets of Maz(A). We also investigate some conditions for purity of a filter F' by
considering o(F) = {a € A| y A z = 0 for some z € F and y € a'} and stability of

U(F) where U(F') is an open set in Spec(A) with F-topology.

F. Kh. Hagani, PhD Thesis IV Shahid Bahonar Univ. of Kerman /Math. 2009
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Chapter 1

MYV -algebras

1.1 Introduction

The theory of MV-algebras has its origin in the study of the system of infinite-valued
logic originated by Lukasiewicz. The completeness of the propositional Lukasiewicz
logic was first published by Rose and Rosser in 1958. An earlier proof by Wajsberg
was never published.

In 1958 C. C. Chang developed an algebraic version of Lukasiewicz propositional logic
and provided an algebraic proof of the completeness. The resulting algebraic system
became known as an MV-algebra. MV-algebras, therefore, stand in relation to the
Lukasiewicz infinite valued logic as Boolean algebras stand in relation to classical
2-valued logic. Boolean algebras, of course, have not stayed glued to their origin in
logic, their uses showing up in other areas of mathematics. Moreover there has been

extensive investigations concerning their structures.
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1.2 Preliminaries

’

Definition 1.2.1. [5] An MV-algebra is a algebra (A, ®, —,0) with a binary operation
@ : Ax A— A, aunary operation — : A — A and a constant 0 satisfying the

following equations for each z,y,z € A:

.5{

W)z (y@z)=(z®Y) @2

(B)zdy=y;

(3) z@0=uz;
(4)T==g;
(5) z®0=0;

(6) Toy)dy=(TSz)D .

We note the axioms 1-3 state that (A4, ®,0) is an abelian monoid.

Example 1.2.2. [5] (1) A singelton {0} is a trivial ezample of an MV-algebra.

(1) Consider the real unit interval [0,1], and for all z,y € [0,1], let T @ y =qey
min(l,z +y) and T =gy 1 — z. It is easy to see that [0,1] = ([0,1],®,—,0) is an
MV-algebra.

(i4) Given an MV-algebra A and a set X, the set A* of all functions f : X — A

becomes an MV-algebra if the operations +, — and the element 0 are defined pointwise.

Remark 1.2.3. [5] If A is an M V-algebra, then we can define the binary operations

O, A, V,—,0 and the constant 1 as follow :

(1) a®b=def5695;

(2) anNb=(a®b)Ob;
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7i1.2 Preliminaries 3

_:(3)a\/b=(a@5)eab;

‘(4)a—>b=EEBb;
(5) 20 Y =¢es TOY;

(6) 1 =def 6

‘Corollary 1.2.4. [5] The following identities are immediate consequence of T = .

(8)z@l=1,
“ (4) (zoy)®y=(yOz) Ba

Proof: (1) 1= 0=0.

(2) By Remark 1.2.3 (1), 07 = (Z®Y) = (z ®y). Therefore we have
r®y=(T0O7).
(3) From (2), it is trivial since 1 =0,

(4)

(zoy @y = (z07) By

Lemma 1.2.5. [5] Let A be an MV-algebra and z,y € A. Then the following condi-
tions are equivalent:

(1)T®y=1,




1.3 MV-chiain * A

(3)y=2®(yo);

(4) There is an element z € A such that x @ z = y.

Proof (1=2)2z0y=Z07 thenwehavezQ7=7@y=2dy=1=0.
(2=>3)iij3‘rom Corollary 1.24, z2® (y0z)=y® (z0y) =y® (z0y) =y 0=1y.
(3=4) Take z=y Sz then,z® (yS z) =y.

(4= 1)Sincez®ZT=1,thenTDy=T@zrB2z2=10z=1.

Remark 1.2.6. [5] Let A be an MV-algebra. For any two elements  and y of A
let us agree to write x < y iff z and y salisfy the equivalent conditions in Lemma
1.2.5. It follows that “ <™ is a partial order, called the natural order of A. Indeed,
reflexivity is equivalent to x ® T = 1, antisymmelry follows from conditions 2 and 3,

and transitivity follows from condition 4.

1.3 MV-chain

Definition 1.3.1. [5] An MV-algebra whose natural order is total is called a MV-

chain.

Therefore, by Lemma 1.2.5 (4), the natural order of the MV-chain [0, 1] coincides

with the natural order of the real numbers.

Lemma 1.3.2. [5] Let A be an MV-algebra. For each a € A, @ is the unique solution

z of the simultaneous equations:
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1.3 MV-chain 5

i) a@z=1

]

(i) a®@z =0

Proof: By Lemma 1.2.5, those two equations amount to writing @ < z < @.

Lemrna 1.3.3. [5] In every MV-algebra A the natural order “ <” has the following

:ffpropertz'es:

Dz <y fy<z;

2)Ifx <y then foreachz€ A, 2@ 2<ydzandz®2z<y0Oz;

zoylziff t<yYd=z

Proof: (1) Suppose that z < y. Then by Remark 1.2.6, 1 = T @y = 7 & Z. This
means that 7 < Z. The converse is similar.

(2) Let z < y. Then T@ y = 1 and by Lemma 1.2.5, there is an element z in A such
that z@z=1y. Consider t® zPyD2z=70ydz=1®z=1. Thsz@z<ydz.
From (1), the other part is trivial.

(3) Consider s 0y < zifl 2Oy D2z =11FZSFTPH z = 1. This equivalent with

z<7Y®dz.
We recall that a poset L is a lattice if for each z;y € L, x Vy and z Ay exist in L.

Proposition 1.3.4. [5] On each MV-algebra A the natural order determines a lattice
structure. Specifically, the join x V y and the meet x Ay of the elements z and y as
follow are given.

(1)zVy=(z07)0y=(z0Y)dY,

2)zNy=(TVY) =20 (T DY),

(3) (zoy) Ay x)=0.
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Proof: (1) Sincez@®T=1and (z0y)dy = (y©z)®z, from Lemma 1.3.3 (2) we
have z Sf(xey) Gyandy<(z6Yy) dy.
Suppose that £ < z and y < z. By Lemma 1.2.5 (1),(3), @z = 1 and z = (z69) ®y.

Then we can write

L ((coy)ey) ez = (zoy)ey)eye(zoy)

= (ye(zoy)e(zoy) d(:0y)

(ye(zoy)eToyd (20VY)

= (yo(z0y)dTd2z=1

It follows that (z © y) ® y < z which completes the proof of (1).

(2) We now immediately obtain (2) as a consequence of (1) and Lemma 1.3.3 (1).

B)(zey Aoz = (zey)o(zoy)®(yo1))
= 2070 [YPT® (Yo 1))

= z20(T9(yor)o(Te(yor) ey

= (yor)o(yer)ez)o(Te(yor)ey)

= y070(yoz)®z)0((z0(yo ) ®Y)

= 20z0Wer)0yoT® (z0 T )))

= 70@z@(yo2)0@oFer)o((zoFer)ey)

= 0,

8|

because, in each MV-algebra we have 1t 0T = (T @ %) =1=0
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1:.4 Lattice Reduct

Definition 1.4.1. [5] Let A be an MV-algebra and z,y € A. We set z <y iff

z Vy =1y or, equivalently, t ANy =z.

It is easy to see that the relation < is an ordering over A.

-,
it

Proposition 1.4.2. [5] Let A be an MV-algebra. Then the poset (A, <) is a lattice
such that, for every z,y € A, g.l.b{z,y} =z Ay and L.u.b{z,y} =z Vy, where g.lb

and Lu.b means the greater lower bound and the least upper bound of x,y.

Proof: z Ay is a lower bound for z and y, because, z A (z A y)=(xAz)ANy=zAY
and y A (z Ay) =y Az. Suppose that c <z and ¢ < y. Then, c=cAc < T AY.
Analogously z < z Ay and y < z Ay. Suppose that z < d and y < d. Then

zVy<dvd=d.
Theorem 1.4.3. [5] Let A be an MV-algebra. Then (A,V,A,0,1) is a bounded dis-
tributive lattice.

Proof: Obviously, A is bounded. So we need to show the distributivity law, that is

tA(yVz) = z0EZ WYV 2)
= 30(T®Y)V T =2)
= (z0E6Y)V(zo TS =2)

= (zAY)V(zAz).
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Notice that the natural order makes every MV-algebra A in to a lattice with minimum

element 0 and maximum element 1. We shall denote this lattice by L(A) and called

the lattice reduct of A.

1.5 ];}esiduation

A residuated lattice ([14]) is a structure (L, V, A, —, ®,0, 1) such that (L,V,N,0,1)
is a bounded lattice, (L, ®, 1) is a commutative monoid and adjunction holds, i.e. for
any a,b,c € L, we have a £ b — cif a © b < ¢. Now, let A be an MV-algebra.
From Remark 1.2.3, weset z Oy = (f_@—@—)_ and z — y = T @ y then we conclude
that (L(A),—,®,V,A,0,1) is a residuated lattice, because, let a < b — ¢, ie.
a<b®ec thena®@b<bO (5@ c). Hence, a®b < bAc < c Viceversa, assume

a®b<c, then (a@b)@ggg@candagavng-—w.

Theorem 1.5.1. [14] A residuated lattice (L,V, A, —, 0,0, 1) is an MV-algebra iff
it satisfies the additional condition : (x — y) — Y = (y — z) — =, for any

z,y € A.

Example 1.5.2. We give an ezample of a finite residuated lattice which is an MV-
algebra. Let A = {0,a,b,c,d,1}, with0 <a <b<1,0<c< d < 1, but a,c and

respective b,d are incomparable. We define
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—|0va b ¢ d 1 ©10 a b ¢ d 1
o j1 1 1 1 11 00 0 0 0 0 O
a |d 1 1 d 1 1 a{0 0 a 0 0 a
b |ec d 1 ¢ d 1 b0 a b 0 a b
c |bab b 1 1 1 c|0 0 0 ¢ ¢ ¢
d ja b b d 1 1 di0 0 a ¢ ¢ d
1 |0 a b ¢ d 1 110 a b ¢ d 1

Itiseasytoseethat 0=1,8=d,b=c,c=05b,d=oq and for all z,y € A, we have
(xt—y) — y=(y — z) — z . For instance (a — d) — d=1— d=d and

(d—a)—a=b—a=d.

Example 1.5.3. We give an ezample of a finite residuate lattice A = {0,a,b,¢c,d, e, f, g}
which is an MV-algebra but not an MV-chain, with0 <a<b<e<1,0<c< f<
g<l,a<d<g, c<d<e,but {a,c}, {bd},{d, f},{b, f} and, respective {e, g} are

incomparable. We define
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— 10 a b ¢c d e f g 1 10 a b ¢ d e f g 1
o1 1 1 1 1 1 1 1 1 0/(0 0O 0O O0O0OO0OO0OTUD
e g 1 1 ¢g 1 1 g 1 1 a0 0 a 0 0 a 0 0 a
b |f g 1 f g 1 f g 1 b0 a b 0 a b 0 a b
c |e e e 1 1 1 1 11 ¢cl]0 0 0 0 0 0 ¢ ¢ ¢
d‘ d e e g 1 1 g 1 1 dl/0 0 a 0 0 a ¢ ¢ d
e lc d e f g 1 f g 1 e{0 a b 0 a b ¢ d e
f b b b e e e 1 11 f10 0 0 ¢c ¢ ¢ f f f
g la b b d e e g 1 1 910 0 a ¢c ¢ d f f g
1 |0 a b ¢ d e f g 1 1{0 a b ¢c d e f g 1

and so A become a residuated lattice and from Theorem 1.5.1, it is easy to see that

A is an MV-algebra.

Remark 1.5.4. [5] Let A be an MV-algebra. For each z in A, we let Ox = 0 and for

each integer n > 0, (n+ 1)z =nz & z.

Proposition 1.5.5. [5] Let z,y be elements of an MV-algebra A. If x Ay =0 then

for each integer n, nx Any =0

Proof: We know that for any z,y € A, ¢z > y iff y < z. Therefore, if z Ay = 0,
since in each MV-algebra we have z @ (y A z) = (z ® y) A (z @ z) then by Lemma
133, z=z®(zAy)=(zd2) N (z®y)>22Ay, whence 0=z Ay >2zAy It
follows that 0 = 2z A 2y = 4z A 4y = .... The desired conclusion now follows from

nr Any < 2%z A2y = 0.
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1'.6 Homomorphim

Definition 1.6.1. [5] Let A and B be MV-algebras. A function f : A — B is a
homomorphism iff it satisfies the following conditions, for each z,y € A:

(i) 1(0) =0,

(i) f(z @) = f(2) ® f W), L

(1) f(T) = f(=).

The kernel of f: A — B is the set Ker(f) = {z € 4| f(z) =0} = f1(0).

1.7 Complemented elements of L(A)

Definition 1.7.1. [14] A lattice A is said to be Boolean algebra , if it is distributive
in which with every a € A there is associated an element @ such that a A = 0 and

aVa=1. In this case, @ is the complement of A.

When L is distributive each z € L has at most one complement, denoted z. We
know that if z Vy =1 and z Ay = 0, then y = T. Thus any complemented element
z of L(A) has T as complement. We further let B(L) be the set of all complemented
elements of the distributive lattice L. Note that 0 and 1 are elements of B(L), because
(0) = 1 and (1) = 0. As a matter of fact, B(L) is a sublattice of L which is also a
Boolean algebra. For any MV-algebra A we shall write B(A) as an abbreviation of

B(L(A)). Elements of B(A) are called the Boolean elements of A. Therefore we have

Proposition 1.7.2. [5] Let A be an MV-algebra and S(A) = {z € Al @z =z} =

{z € Alz ®z = z}. Then we have
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: (i) z is complemented in L(A) if ez =z if 1Oz = z;
r (zz) (S(A),®,—,0,1) is a subalgebra of A;
(11i) (S(A),V,A,—,0,1) is a complemented sublattice of L(A). Moreover, we have
zVy=x®vy, for every z,y € S(A);
© () (S(A),®,0,—,0,1) is a Boolean algebra. It is the greatest Boolean subalgebra of

A.

1.8 The ideals of MV-algebras

Definition 1.8.1. [5] An ideal of an MV-algebra A is a subset I of A satisfying the
following conditions:

(i) 0 e I;

(ii) Ifxel,yc Aandy <z theny € I;

(i) feel andy €l thenxdy € I.

Remark 1.8.2. [5] The intersection of any family of ideals of an MV-algebra A is
still an ideal of A. For every subset W C A, the intersection of all ideals I, which is

containing W, is said to be the ideal generated by W and will be denoted < W >.

It is easy to see that if W = 0, then < W >= {0}. If W £ 0, then < W >= {z €
Alz<wGwe®....&wy for some wy,...,w; € W} ([5]). In particular, for each
element z of MV-algebra A, the ideal < z >=< {z} > is called the principal ideal
generated by z, and we have < z >= {z € A| nz > z for some integer n > 0}. Note

that < 0 >= {0} and < 1 >= A.




