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Abstract 

 

 

Production of nickel-free stainless steel coated with ZrTiO4-

PMMA hybrid sol–gel films and investigation of its structure 

and electrochemical behavior 

 

By 

 

Erfan Salahinejad 

 

 

In this research, nickel-free austenitic stainless steels were 

prepared by mechanical alloying and liquid-phase sintering processes. 

According to X-ray diffraction and transmission electron microscopy, 

mechanical alloying of the powder mixture with the chemical 

composition of ASTM F2581, with iron nitride as the nitrogen source, 

produced nanocrystalline/amorphous powders. By liquid-phase 

sintering of the synthesized powder with a Mn-Si eutectic alloy as a 

novel additive, desirable densification was obtained. Also, X-ray 

diffraction and transmission electron microscopy showed that the 

austenite grain size remains yet in the nanometric scale even after the 

used sintering process at 1050 °C for 60 minutes. The corrosion 

behavior of the prepared stainless steels was studied by anodic 

potentiodynamic polarization and electrochemical impedance 

spectroscopy in a simulated body fluid, suggesting a better resistance 

compared with AISI 316L. Additionally, human stem cell adhesion 

evaluations on the synthesized implants confirmed their 

biocompatibility. In summary, the used mechanical alloying and 

sintering processes were found to be worthy to prepare nanostructured 

stainless steels with a high relative density and a desirable corrosion 

and cytocompatibility behavior. Afterwards, to improve the corrosion 

resistance and biocompatibility of the substrate, two types of sol–gel 
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derived thin films (ZrTiO4 and hybrid ZrTiO4–PMMA) were 

deposited by a spin coating method. In the used particulate sol–gel 

process, a polymeric dispersant, namely carboxymethyl cellulose, was 

originally used to avoid agglomeration of nanoparticles and to obtain 

desirable film qualities. The films were characterized by differential 

scanning calorimetery, X-ray diffraction, transmission electron 

microscopy, atomic force microscopy, and scanning electron 

microscopy, indicating the preparation of high-coverage, crack-free, 

and homogeneous coatings. Water contact angle, electrochemical, and 

biocompatibility evaluations demonstrated that the coatings improve 

the hydrophilicity, corrosion resistance, and thereby biocompatibility 

of the substrate. Despite the higher corrosion protection by the hybrid 

ZrTiO4–PMMA coating, the sample coated with the pure ZrTiO4 thin 

film exhibited a better cell viability. Furthermore, a new double-layer 

sol–gel coating, which comprises ZrTiO4 as the bottom layer and 

ZrTiO4–PMMA as the top layer, was deposited on the stainless steel 

substrate. According to potentiodynamic polarization experiments, the 

substrate coated with this new film exhibited superior corrosion 

resistance, compared with the same steel coated with purely inorganic 

ZrTiO4 and hybrid ZrTiO4–PMMA films. In summary, the ZrTiO4-

based sol–gel films can be considered as an efficient approach to 

improving the corrosion resistance and biocompatibility of metallic 

implants. 
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1. Introduction 

 

 

Metals and alloys are the oldest materials used in surgical 

purposes to make devices for fracture fixation, joint replacement, 

external splints, braces, and traction apparatus, as well as dental 

amalgams. Nowadays, the widely used metallic biomaterials include 

stainless steels, titanium and its alloys, cobalt-chromium-based alloys, 

as well as tantalum, niobium, and gold. Stainless steels, typically AISI 

316L, are conventionally used in orthopedics, with main advantages 

of low cost, good mechanical properties, sufficient corrosion 

resistance, and easy processing. However, problems have been found 

with this type of medical-grade stainless steels. The most important 

problem is the negative effect of metal ions or fretting debris released 

from the implant due to corrosion and wear. Nickel and chromium are 

known as potentially harmful elements in the medical stainless steels. 

Nickel ions act as allergens in the human body, which may cause 

inflammations like swelling, reddening, eczema, and itching on skins. 

Due to the harmful effect of nickel ions on the human body, nickel-

free austenitic stainless steels, generally Fe–Cr–Mn–Mo–N system, 

are considered as a potential replacement for conventional nickel-

containing alloys. Because of this, with the development of new 

surgical stainless steels and the modification of ASTM medical 

standards, the nickel content is decreasing and the nitrogen content is 

increasing. Currently, in ASTM standards, two nickel-free medical-

grade stainless steels are pointed out: ASTM F2229 and ASTM 

F2581. 

To produce nitrogen-containing nickel-free austenitic stainless 

steels, there are several methods, such as melting processes, solid 

nitrogen absorption treatment, and powder metallurgy. It is known 

that mechanical alloying is a capable process to synthesize a wide 

variety of equilibrium and non-equilibrium structures, including 

supersaturated, metastable crystalline, quasicrystalline, intermetallic, 
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nanostructured, and amorphous alloy powders. This powder 

processing route can be successfully used to produce nitrogen-

containing stainless steels. Nitrogen alloying through mechanical 

alloying can be accomplished by either milling under a reactive 

nitrogen atmosphere or milling under an inert atmosphere with metal 

nitrides. On the other hand, to meet the best mechanical and corrosion 

behaviors of powder metallurgy parts, high densities are imperative. 

To do so, a number of approaches like warm compaction, increasing 

sintering temperature and time, and using proper additives to activate 

liquid-phase sintering are under consideration. In the liquid-phase 

sintering process, the formation of a liquid phase promotes 

densification via providing a particle rearrangement, faster diffusion 

rate, and pore elimination. 

In the biomaterials field, as well as the modification of the 

chemical composition of stainless steels, leading to the development 

of nitrogen-containing nickel-free alloys, surface modification 

techniques are considered, with the principal purpose of an 

improvement in corrosion resistance, wear resistance, antibacterial 

property, and tissue compatibility. Coating, as one of these methods, 

not only can increase the corrosion resistance of the implant, but also 

can improve the implant-tissue interaction, affecting biological 

responses like bioactivity and cytocompatibility. Among various 

methods used to process coatings, the sol–gel deposition process has 

advantages, such as high homogeneity, low sintering temperatures, 

and simplicity of complex shape coating. 

In this thesis, medical-grade stainless steel powders with the 

nominal composition of ASTM F2581 were prepared by mechanical 

alloying. After powder characterization, bulk stainless steel samples 

were prepared by liquid-phase sintering of the same mechanically-

alloyed powder with a Mn-Si eutectic alloy. Also, the corrosion 

behavior and cytocompatibility (stem cell adhesion) of the prepared 

samples were evaluated. Then, two types of sol–gel derived coatings 

(ZrTiO4 and ZrTiO4–PMMA) were deposited on the stainless steel 

sample, to improve corrosion resistance and biocompatibility. 

Zirconium titanate (ZrTiO4) and polymethyl methacrylate (PMMA) 

are known as a biocompatible ceramic and polymer, respectively. The 
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electrochemical behavior and cytocompatibility of the coated samples 

were also evaluated. Finally, the cell adhesion to the samples was 

correlated with surface characteristics of roughness, wettability, and 

corrosion resistance. 
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Theory and literature review 
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2. Theory and literature review 

 

 

2.1. Biomaterials 

 

2.1.1. An introduction to biomaterials 

 

Williams [1] defined biomaterials as “nonviable materials used in 

medical devices, intended to interact with the biological systems”. The 

basic requirement of a biomaterial is that the material and tissue 

environment should coexist without any undesirable effect on each 

other, defined as biocompatibility. These devices are termed as 

“implants” when they are intended to remain there for a substantial 

period, and as “prosthesis” when they are permanently fixed in the 

body for a long-term application until the end of lifetime [2]. Fig. 2-1 

summarizes applications of inorganic biomaterials in the 

musculoskeletal system of the human body. 

Orthopedic devices are generally implanted into the skeletal 

system of the human body for healing, correcting deformities, and 

restoring the lost functions of the original part. They are supporting 

bone plates, screws, total hip joints, knee joints, elbow joints, shoulder 

joints, and reattachments for tendons or ligaments. The implants are 

exposed to the biochemical and dynamic environment of the human 

body and their design is dictated by anatomy and restricted by 

physiological conditions. In the past few decades, the increase in the 

utilization of self-operating machines, participation of many persons 

in sports, defense activities, increased interest in motorcycles and 

bicycles, and day-to-day increasing traffic, have resulted in an 

enormous increase in the number of accidents. This has automatically 

led people to refer to orthopedic implants for the early recovery and 

resumption of their routine activities, which has provided a high level 

of motivation for the further development of orthopedic implants [3]. 
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2.1.2. Metallic biomaterials 

 

Metals and alloys are the oldest materials used in surgical 

purposes to make devices for fracture fixation, joint replacement, 

external splints, braces, and traction apparatus, as well as dental 

amalgams [3]. Because metals and alloys, compared to polymers and 

ceramics, have a more tensile strength, fatigue strength, and fracture 

toughness. Because of the critical and detrimental effects of corrosion 

on the human body, the history of metallic implants development has 

been mainly focused on better corrosion-resistant materials. 

 

 

 
Fig. 2-1. Clinical uses of inorganic biomaterials [3]. 


