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Abstract

Polyoxometalates (POMs) are a class of well known molecularly defined, discrete
and anionic metal-oxygen clusters of early transition metals in their highest oxidation
states (most commonly V¥, Mo"', and W""). In the past decades, POMs have attracted
considerable interest because of their widespread use in many fields including biological
applications, magnetism, medicinal chemistry, materials science and catalysis. In recent
years, the catalytic activity of POMs have been increasingly recognized, and their
applications as an efficient catalyst in organic transformations are becoming a key topic.

Among the all of type of POMs Keggin type POMs in bulk and salts or supported
forms have been extensively investigated because of their high structural stability, strong
Bronsted acidity, exhibiting fast reversible multi electron redox transformations under mild
conditions and etc.

In this study, catalytic activity of 12-tungstocobaltate supported on nano silica from
rice husk and its potassium salt and also cesium 12-tungstophosphoric acid as nano
catalysts have been investigated for some organic reactions like synthesis of 3-keto enol
ethers, synthesis of B-amino ketones via three component Mannich type reactions,
Hantzsch Three Component Condensation, Synthesis of f-Enaminones, Biginelli Reaction,
Synthesis of B-Acetamido Ketones and some other organic reactions.

In summary, the present methodologies offers several advantages such as catalyst
recyclability, inexpensive catalyst, environmental friendly procedure, short reaction time,

high yields and easy isolation.
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Chapter One

Introduction



1.1. Nanotechnology and Catalysis

In 1836 the famous Swedish chemist J.J. Brezelius introduced the concept of
catalysis. In the Edinburgh New Philosophical Journal, he proclaimed: “I hence will name
it the catalytic force of the substances, and | will name decomposition by this force
catalysis. The catalytic force is reflected in the capacity that some substances have, by their
mere presence and not by their own reactivity, to awaken activities that are slumbering in
molecules at a given temperature” [1]. At the beginning of the 20" century, W. Ostwald
presented the generally accepted definition of a catalyst as a species which increases the
rate of a chemical reaction through the formation of intermediate compounds and which is
restored at the end of the reaction. In 1909, Ostwald was awarded the Nobel Prize in
Chemistry for his work on catalysis chemical equilibrium and reaction velocities [2].

Catalysis is perhaps one of the most important technologies available, since it plays a
critical role in the development of efficient production methods for a wide range of
materials, from fuels to polymers, and in the development of more effective and safer
pharmaceuticals. Catalysis is the occurrence by which certain chemicals (catalysts) can
promote a chemical reaction without undergoing any permanent chemical transformation
themselves. Thus, theoretically, recovery of the catalyst is possible after the reaction is
completed, enabling it to be recycled. Without the proper catalyst, many reactions proceed
infinitely slowly or not all. Moreover, because of its effects on the kinetics of the reaction,
which can lead to different chemical entities, the chemical nature of the catalyst can have
decisive impact on the selection of reaction manifolds. Over the last few decades, there has
been rapid progress in the understanding of the molecular events (micro-steps) leading to
the final products in some of these reactions. Subsequently, there has been a striking effect
on the number of new catalyst systems currently under development. Combinatorial
methods have recently been introduced in the catalyst discovery process for rapid
screening of potential homogeneous and heterogeneous catalysts [3].

Nowadays, nanotechnology has been widely used in chemical industries especially in
nanocatalysis industries. The emergence of the term “nanotechnology” and its increasing

use in the scientific and popular scientific literature reflects the expanding interest in the



ability to gain control over the organisation of material, in order to fabricate and exploit
entities with dimensions of less than 100 nm. This fascinating field opens up many new
exciting possibilities for example in materials science, biomolecular transport systems, bio-
sensor technologies and nanocatalysis.

Nanocatalysis is a rapidly growing field which involves the use of nanomaterials as
catalysts for a variety of homogeneous and heterogeneous catalysis applications.
Heterogeneous catalysis represents one of the oldest commercial practices of nanoscience;
nanoparticles of zeolites [4], oxides [5], heteropoly acides [6,7], and other compounds have
been widely used for important chemical reactions. A key objective of nanocatalysis
research is to produce catalysts with 100% selectivity, extremely high activity, low energy
consumption, and long lifetime. This can be achieved only by precisely controlling the
size, shape, spatial distribution, surface composition and electronic structure, and thermal
and chemical stability of the individual nanocomponents.

Among various type of nanocatalysts, heteropoly acids (HPAS) are most attractive,
because of their unique properties such as well defined structure, Bronsted acidity,
possibility to modify their acid—base and redox properties by changing their chemical
composition (substituted HPAS), ability to accept and release electrons, high proton
mobility, etc [8-10]. Several new industrial processes based on HPAs catalysis have been
developed and commercialized in the last two decades, which are considered to be the

efficient measure to resolve the environment problems.

1.2. Polyoxometalate: Scope and Definitions

Polyoxometalates (POMs) are generally soluble metal-oxygen clusters composed of
high atomic proportions of one kind of atom in a positive oxidation state (‘addenda atoms”)
and much smaller proportion(s) of the other kind(s) of atom(s) in positive oxidation state(s)
(‘heteroatom’) and normally oxygen (-2) atoms . The group of V and VI transition metal
centers function as addenda atoms in high oxidation states (mainly Mo, W and V and also
Nb and Ta). The atoms that can function as addenda are those that: 1) change their
coordination with oxygen from 4 to 6 as they polymerize in solution upon acidification and
2) have high positive charges and are among the smaller atoms that fall within the radius
range for octahedral packing with oxygen. The ability to act as addenda is greatly
enhanced if the atoms are able to form double bonds with unshared oxygens, by pp-dp
interaction. The heteroatom could be from the p-block elements (e.g. AI**, Si**, P**, Ge™,



1™, Se**, Te**, Bi?* etc.), or transition metals, although some derivatives with S, F, and Br
are known [11].

POMs are composed of MO, units, where ‘n’ indicates the coordination number of M
(n = 4, 5, 6 or 7). Usually, distorted octahedral coordination (n = 6) is observed. Apart
from M and O, other elements (heteroatoms), which are usually labeled as ‘X’, can be part
of the POM framework. As a general rule, they are tetra- or hexa- coordinate and they lie
in the center of the MOy shell.

According to their chemical composition they can be classified in two groups:

1) The isopoly compounds (isopolyanions or isopolyoxometalates) contain only d°
metal cations and oxide anions.

2) The heteropoly compounds (called heteropolyanions, heteropolyoxometalates, or
heteropolyacids, when contain in the structure H*, HsO", Hs0,") contain one or more

p-, d- or f-block “heteroatom” in addition the other ions.

Isopolyanions (IPAS): [MmOy]™

Heteropolyanions (HPAS): [XxMmO,]%, with x <m

Where ‘X’ is the heteroatom which located in the centre of the polyanion and ‘M’ is the
metallic element which act as an addenda atoms. There is no restriction for the heteroatom
‘X’ and it can be either tetrahedrally coordinated (as in the Keggin and Wells-Dawson’s
type polyanions) or octahedrally coordinated (as in Anderson-Evans type polyanions).
Almost 70 elements from most groups of the Periodic Table (except noble gases) are
known to be able to play this role [12,13].

The HPAs are environmentally benign solid catalysts, which offer several advantages
in terms of catalytic performance, strong acidic, redox sites and selectivity to particular
reaction products by selective stabilization of reaction intermediates [14,15]. These
compounds by virtue of their strong acid sites and redox characteristics have been used as
catalysts under homogeneous as well as heterogeneous conditions [14,15]. They are green
catalysts that function in a variety of reaction fields and are efficient harmless to the
environment with respect to corrosiveness, safety, quantity of waste and separability [16].
Furthermore they are inorganic polymer complexes with oxygen bridge, which can form

donor-acceptor complexes with various kinds of electron donors as electron acceptors.

1.3. Historical Conspectus

In 1826, Berzelius [17] first observed a ‘yellow precipitate’ after mixing ammonium

molybdate and ortho-phosphoric acid. This yellow precipitate was originally formulated as



3(NH,)20.P,05.24M003.aq which now we call ammonium 12-molybdophosphate, the first
synthetic heteropoly salt or POM isolated. In 1854, Struve [18] reported polymolybdates
based on some metal heteroatoms, including 6-molybdates of AI**, Cr** and Cu?*. The
study of polyoxoanion chemistry was accelerated by Marignac [19] in 1862, when two
isomeric forms of a silicotungstate [SiW12040]*" were identified by analytical techniques.
After that, the field developed rapidly, so that over 700 heteropoly compounds were
reported by the first decade of the twentieth century and analyzed by several scientists.
Among the most active were P. Chretien, H. Copaux, W. Gibbs, R. D. Hall, A.
Rosenheim, E. F. Smith and H. Struve. In 1929, Linus Pauling [20] made a major
breakthrough in the structural chemistry of HPAs. Pauling proposed a structure of 12:1
heteropoly complexes based on the arrangements of central tetrahedron hetero atoms XO4
surrounded by twelve addenda MOg corners sharing octahedral and their isomers; and also
structures of 9-heteropoly and a structure of 18:2 heteropoly complexes based on eighteen
MOg octahedral surrounding, two central XO, tetrahedron. It was Keggin [21,22] who in
1933 solved the structure of the most important of the 12:1 type of HPAS,
[H3PW1,040]-5H,0, by powder X-ray diffraction. This structure involves four 3-fold
W30;3 groups, and each WOg octahedron shares two edges with other WOg groups; and the
four W3013 groups are attached to one another by corner sharing, which partially
confirmed the Pauling proposal. In 1948, Evans [23] determined the structure of another
type Anderson’s HPA (6:1) by single-crystal X-ray analysis of [TeMogO,4]® salts. This
structure is often referred to as the Anderson-Evans structure. In 1953, Dawson [24]
reported the structure of a 18:2 HPA, [P,W13062]°. The use of X-ray crystallography was
the turning point for the determination of structure in POM chemistry and in the past fifty

years, hundreds of structures have been reported.

1.4. Structural Characteristic
There are several reports, [25] books [26] and reviews [27,28] published on POMs,

showing an enormous molecular diversity in this inorganic family of molecules. Many
authors state that POMs can be regarded as packed arrays of pyramidal MOs and
octahedral MOg units. These entities are analogous to the —CH; — building block in organic
chemistry.

All POM clusters included in this classification contain MO, units and the
frameworks are built with the MOg unit. The MOg units are then packed to form different

shapes but there are some rules to connect the each unit. The molecule as a whole is built



by edge- and/or corner-sharing MOg octahedral (Fig. 1.1). The most stable unions between
two octahedral are the corner- and edge-sharing models, in which the M"" ions are far
enough from each other, and their mutual repulsion is modest. In case C of Fig. 1.1, the

metallic centers are closer than A and B.

Fig. 1.1. The polyhedral models represent the three possible unions between two MOg octahedral units.
A) corner-sharing, B) edge-sharing and C) face-sharing. Each corner represents an oxygen position.

The polyanion structures are governed by electrostatic and ionic radius

(charge/radius) of the metal centers and the addendum atom should have the ability to form

metal-oxygen n-bonds [29].

1.4.1. Isopoly Anions

Traditionally, IPAs are polyanions containing only transition metals. Main group
elements may appear but they are considered as ligands only, not as a part of the
framework.

Many IPAs are known today and the number of published structures increases
rapidly with synthesis in nonaqueous solvents and with the use of ligands other than oxo
ligands. IPAs may be based upon various metallic frameworks with a number of metal
centers varying from 2 up to over 150. Involved metals are vanadium, niobium, tantalum,
molybdenum, tungsten, and more seldomly some others.

There are mixed species involving several types of metal atoms. It is also possible to
have polyoxometalates in which other ligands having incorporated, for instance thio, or
nitrosyl, or various organic moieties, all of them replacing oxo ligand(s) of a parent
structure. Finally mixed species in which the same metal species occurs under various

oxidation states are known [30].

1.4.2. Heteropoly Anions
HPAs are those polyanions and their derivatives made of an assembly of fused MOg
octahedrons more or less completely wrapped around a tetrahedron containing traditionally

a main group element, more seldomly a transition metal [30].



1.4.2.1. Keggin Structure

As mentioned previously, Berzelius is credited for the discovery and documentation
of the first fully recognized POM; (NH4)3[PMo0:,040]. However structure resolution is
credited to Keggin, thus HPAs of the [XM01,04]" type are often described as a ‘Keggin
type’ (Fig. 1.2) [31]. Keggin HPAs, with general formula X""M1204"® where “X” is the
central atom (Si**, Ge*", P>, As®*,Co*, etc.), “n” the degree of its oxidation, and “M” is

molybdenum, tungsten or vanadium which can be partly replaced by other metals [32].

Fig. 1.2. Keggin a-XM3,04"".

Keggin POMs overall exhibit virtual tetrahedral (T4) symmetry, with a central XO4
tetrahedral unit surrounded by 12 MoOg octahedral units which are arranged into four
groups of three edge sharing Mo3O13 units. Each of the four Mo3O13 groups are linked to

the central PO, unit and to each other by their corresponding edges [33].

1.4.2.1.1. Primary, Secondary and Tertiary Structures

It should be noted that the hierarchical structure of solid HPAs was important for the
understanding of the heterogeneous HPA catalysis, and we denoted the substructures as
primary, secondary and tertiary [34]. This may appear a very simple idea, but enormously

helped the progress of our research.

Primary structure Secondary structure Tertiary structure

H* (H,0),, Cs?*,
Cu?*, K*, Mg, etc

P W304;

Fig. 1.3. Primary, secondary and tertiary structures; hierarchical structure of heteropoly compounds
(HPCs) in the solid state.



