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Abstract

Study of Fundamental Organometallic Reactions

By

Hamid Reza Shahsavari

A complex [PtMe(dppf)], 2, dppf = 1,1'-bis(diphenylphosphino)ferrocene, vahic
contains a chelating dppf ligand, has been prepasedhe reaction of complex
cis,cis[PtMey(u-SMey)], with 2 equiv of the biphosphine ligand dppf at moo
temperature by replacement of SMigands with the P ligating atoms of dppf. The
complex2 reacted with 1 equiv of the strong acidsCBOH and first gave methane,
followed by C-C coupling reaction to give ethane darthe complex
[PtMe(OCOCKHR)(dppf)], 5, and reaction of the complex [PtMeppf)], 1, with 1
equiv of CECOOH gave methane and the comex

Substitution reaction of the labile SMikgand in the cyclometalated platinum(ll)
complexes with general formula [PtAr(ppy)(SMe 10, in which ppy = deprotonated
2-phenylpyridyl and Ar p-MeCgH,4 or p-MeOGsH,4, by several P donor reagents
were studied; the P-donors, L, are phosphines ospgfites, L = P(OPk) P(OPr);,
PPh and L, = PhPCH,PPh. ComplexeslO have a MLCT band in the visible region
which was used to easily follow the kinetics of tlgand substitution reactions by
UV-vis spectroscopy. Although the complex&8 contain 2cis Pt—C bonds, the
substitution reactions followed a normal assoc@atmechanism. The rates of
reactions were dependent on the concentrationhendature of the entering group.

Kinetic study of the oxidative addition reaction airylplatinum(ll) complexes
[Pt(p-MeCsH4)2(NN)], 12, (NN = 1,10-phenanthroline (phen) and’4j#étert-butyl-
2,2-bipyridine {Bubpy)) with Mel in ionic liquids 1-Butyl-3-methyliniazolium
bis(trifluoromethylsulfonyl) imide ([bmim][bta]) orl-butyl-3-methylimidazolium
tetrafluoroborate ([omim][Bff) are described. The reactions were investigated a
function of Mel concentration and temperature ungseudo-first-order conditions
using UV-vis spectroscopy. In general, the oxidataddition reactions in ionic
liquids followed an §2 mechanism, similar to that reported for the sglateactions
in conventional solvents.g. benzene or acetone. The reaction rates in differen
solvents followed the order acetone > ionic liquidsenzene. Therefore no particular
‘ionic liquid effect’ was detected in this kind ofactions. Effect of solvent on the
reactions was examined using a linear solvatiomggneelationship (LSER) based on
the Kamlet-Taft solvent scale.
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Chapter One

Introduction



1.1. General Remarks

Organometallic compounds are those compounds héands between one or more
metal atoms and one or more carbon atoms of amyrgaoup. They are classified

by prefixing the metal with organo; e.g. organoplatinum compounds.
Organometallic compounds, with their metal-carbands, lie at the interface

between classical organic and inorganic chemistrylealing with the interaction

between inorganic metal species and organic mascuh the related metal-organic
compound area, in contrast, the organic fragmebbisid only by metal-heteroatom
bonds.

The organometallic field has provided a seriesngbartant conceptual insights,
surprising structures, and useful catalysts bathnidustrial processes and for organic
synthesis. The field is beginning to make linkshmbiochemistry with the discovery
of enzymes that carry out organometallic cataly$tse field is also creating links
with the chemistry of materials because organonet@dmpounds are increasingly
preferred as the precursors for depositing mateoalvarious substrates via thermal
decomposition of the metal compound.

1.2. Organoplatinum Complexes

The first compound containing an unsaturated hyattoan attached to a metal, and
indeed the first organometallic compound, if onecledes the cyanides, was
[Pt(CH4)CIy)2, discovered by the Danish chemist W. C. Zeiseoag khgo as 1827
and followed 4 years later by the salt which béggsname, K[Pt(gH4)Cl3].H-O.

Ever since that time, platinum has been an impbréament in organometallic
chemistry because it forms a wide range of orgamaliice compounds that are
kinetically sufficiently inert to enable them to leolated and characterized. The
development of NMR for platinum, that 33.7% of whis present in nature as the
195 isotope which has a nuclear spin of ¥2 , has lstactive because of the
possibility of observing coupling between the metatl other nuclei. The presence,
or absence, of such coupling provides valuableexngd on which to base structural



conclusions as well as to make mechanistic sugmestfor the reactions of
organoplatinum complexes.

The common geometries for platinum complexes ane fsquare-planar (1)jand
in some cases tetrahedral?j2nd six (octahedral (3)coordinations. However, other
geometry like uncommon five (trigonal-bipyramida))¥j coordination is desirable
(Schemel.1).

S
//’:Pf\\Me Pt‘\\\\\\C()
— NY Ve / AN Cy = Cyclohexyl
(1) Square-planar (2) Tetrahedral

(3) Octahedral (4) Trigonal-bipyramidal

Scheme 1.1

1.3. Phosphorus Ligands

Owing to the special metal ligation properties dogphorus derivatives, trivalent
phosphorus ligands have played and still play goontant role as metal binders in
organometallic chemistry. These trivalent phospea@ompounds offer chemists the
unique opportunity to modify the steric and elexicoproperties of the ligands. In
terms of electronic structure, theaccepting properties of the phosphorus group can
be strongly modified via replacement of the P-C dsomwith P-O (Schemd.?2),
leading to phosphinites, phosphonites, or phosphite



C C O o

P P P P
C/ \C O/ \C O/ \C O/ \O

Phosphine Phosphinite Phosphonite Phosphite
Scheme 1.2Various trivalent phosphorus ligand families.

Ligands, in general, and more specifically P-deis can also be differentiated
according to their coordinating modee(, monodentate, bidentate, or polydentate;
see Schemg.3).”

N~ —P: R — P
I / AN /
n . .
monodentate bidentate polydentate mixed bidentate
X=0,N, S, etc.

Scheme 1.3Trivalent phosphorus ligands classified by coortioramode

Phosphines (Pfrare one of the most important classes of liganahemistry, in
both the industrial and academic spheres. Phosfigarads are soft, strongdonors,
and their electronic, steric, and stereochemicalp@rties vary based on the
substituents attached to the phosphorus atoms., Thassing the correct phosphine
ligands for a metal complex allows control over éhectronic and steric environment
of the compleX.

3P NMR spectroscopy is routinely used to study ofai@hosphine complexes.
When the substrates are phosphines, this techigcemes even more valuable for
monitoring reactions and characterizing intermediaand products. Howevet'P
NMR spectroscopic data on several related platirmomplexes provided useful
information on structure and bonding in this fuontl group’

The electronic effect of various PRgands can be adjusted by changing the R
group asa result of transmission of electron density alohgmical bonds, quantified
by Tolman® The second important feature of fiRthe variable steric size, as a result
of forces between parts of a molecule. Tolman mapgsed to measure the size of a



