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Abstract

In this paper we construct the By -superbialgebra Cr, and prove that (C¥Y*
is isomorphic to Br-superalgebra of power series of r variables with coeffi-
cients in F. Hence it contains all of germs of superholomorphic functions at
each point of a complex super manifold of dimension (m,n), where n < L,
r = 2071(m 4 n). Then we introduce the notion of superpreholomorphic
sections on the complex supermanifold. In more details we compute two co-
homology groups of the sheaf of superpreholomorphic sections on a complex

supermanifold. Finally we discuss the supercoderivations of Cf.
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Chapter 0

Introduction




The purpose of noncommutative geometry is to extend the correspondence
between geometric spaces and commutative algebras to the noncommutative
case in the framework of complex analysis. Such spaces arise both in mathe-
matics and in quantum physics. The term ”quantum groups” was popularized
by Drinfeld {4]. It stands for certain special Hopf algebras which are nontrivial
deformations of the enveloing Hopf algebras of semisimple Lie algebras of the
algebras of regular functions on the corresponding algebraic groups.

The preholomorphic section is defined by Nekooie [8] and then is devel-
oped on complex manifolds in [5].Sabsevary [10] defined superpreholomorphic
sections on €' and also the supercoderivations of a supercoalgebra.

We assume the reader is familiar with the definitions of Hopf algebra (see
[1] & [11]), sheaf and cohomology group (see [12]), superalgebra and super
manifold (see [2],(3],[6] and [9]).

This thesis is organized as follows.In the first chapter we have the prelim-
inaries.Then in the secound chapter we construct a Bp-superbialgebra whose
dual is isomorphic to the superalgebra of power series of r-variables with coef-
ficients in F. In the next chapter we introduce the notion of superpreholomor-
phic sections and prove that the set of germs of superpreholomorphic sections
is a sheaf and then we compute two cohomology groups of this sheaf. In the
fourth chapter we discuss the supercoderivétions of an A-supercoalgebra and

we find the general form of the supercoderivations of the Cy,.




Chapter 1

Preliminaries




1.1 Hopf algebra

We assume that £ =R, C or any field.
Definition 1.1.1 A k-algebra is a triple (A, M,U) with A, a k-module
and two k-linear maps M : A ®c A — A ( called multiplication) and U :

A — k (called unit map) such that the following diagrams commute.

ArA®rA Y A4
MI | | M (associativity)
ARA — A

and

A
v \
k® A M AQk (unitary property)
UQIN SIRU
AQi A

Definition 1.1.2 A k-coalgebra is a triple (C, A, €) with C a k-module
and A:C — C®;C and ¢: C — k two k-linear maps such that the

following diagrams commute:
C A, C®:C
Al |l A®I (coassociativity)

CerC e4 CR:rC®C




and

C
/ N
k®C 1A CQRk (counitary property)
e® I\ S I®e¢
Ce:C

If we denote A(c) =Y i1y ® c(z), then we have
(c)

(A®I)oA(c) = (I ® A)o A(c),

D Alew) ® ey = D_e(1) @ Alem) = 3 _cq) ® €z ® €3),
© @ @

and (I ®¢)oAc)=(e®1I)o Alc) =id,
ZC(C(l))®C(2) = ZC(l Qe(c)) = ¢ Let 7: C®:C — C®4C be twist map;
t(icl)e bilinear map ((ic()eﬁned by 7(z ® y) = y ® z. Then a k-coalgebra (C, A, ¢)
satisfying 7 0 A = A is said to be cocommutative.
Definition 1.1.3 Let (C,Ac,¢€c),(D,Ap,ep) be two k-coalgebras, then
a k-linear map f:C — D is a k-coalgebra morphism if the following
diagrams commute:
c L b
Ac | l Ap
ca:C 25 D®yD
So Zf (c) ® fle) = 2. f(e) ® f(e)ay

(f(e))
and (cDof)( Y =¢€c(c) for all ce C.




Lemma 1.1.4 Let (C,A¢,ec) be a k-coalgebra,

a) Let D be a subspace of C, satisfying the condition A¢(D) C D ® D,
then (D, Al|p,¢€|p) becornés a k-coalgebra, called k-subcoalgebra of C' and
¢ : D — C, the natural injection map is a k-coalgebra morphism.
b) Let (D,Ap,ep) be another k-coalgebra then (C ®x D,Acgp,€cep) is a
k-coalgebra where Acgp = (I ®7® I)o(Ac ® Ap) and ecgp = €c ® €p.
If we have A(c) =) cuy®cpy , A(d) = dn)®d(y , then

() d
Acep(c®d) =3 ; ¢y ® da) ® c(z) @ d(z() )» and
econ)(c® d) = icc)((c)) ep(d) , forallce€ C and d € D.

Proof. Straightforward.

Lemma 1.1.5 Let V,W be two k-linear spaces and V* =Hom(V, k). If
we define p: V*@W* — (VW)* by p(a®B)(z®y) = (o, z){(B,y), where
aeV* e W zeV and y € W then p is an injective linear map.

Proof. [8. Appendix I].

Proposition 1.1.6 Let (C, A, ¢€) be a k-coalgebra. Setting
M:C*@C 5 (C®C) 25 C and U : k=5 k-5 0%, (C*,M,U)
becomes a k-algebra which we call the dual k-algebra of C.

Proof. (8, 1.1.1].

Proposition 1.1.7 Let (A, M,U) be an algebra with finite dimensional
k-linear space, then p: A*® A* — (A ® A)* turns out to be a bijective. We

define A = p~' o M*, ¢ = U” then (A*, A, ¢) is a coalgebra, called the dual




k-coalgebra of A.

Proof. (8, 1.1.2].

Proposition 1.1.8 a) Let f : C — D be a linear map of coalgebras.
Then f*: D* — C* is an algebra map.
b) Let f: A — B be a map of dimensional algebras. Then f*: B* — A*
1s a coalgebra map.

Proof. [8, 1.4.1 and 1.4.2].

Example 1.1.9 Let B be a k-vector space with the basis {¢;}32,. We define
A:B— B®iBby Alc,) = Xn:c;@)cn_; and € : B — k by €(cn) = bnp.

i=0

Then (B, A, €) is a k-coalgebra.

One can see (1,p. 53-55) as the another reference of coalgebra.

Proposition 1.1.10 Let (H,M,U) be a k-coalgebra and (H,A,¢) be a
coalgebra. The following conditions are equivalent.

1) M and U are coalgebra maps,

i1) A and e are algebra maps,

i) A(gh) = (Zh)g(l)h(l) ® 92)h2)
A =181, cgh) = )e(h), c(1)=1.
Proof. (8, 3.1.1] or {1, 2.1.1].
Definition 1.1.11 Any system satisfying the conditions of (1.1.10) is called

a k-bialgebra.

Example 1.1.12 Let B be k-coalgebra as in (1.1.9).




1+
If we define M(c; ® ¢;) = ¢iy; and U(1) = ¢o, then (B, M, U, A\ ¢)

is a k-bialgebra.
If we set X; = (c;)", for:=0,1,2,...,then {X;}2, is a basis of B*, the dual

algebra of B. Since we have

(XiXjien) = (A70p(Xi ® X;),cn)

= (p(Xi ® X;),Alcn))

= Z(P(Xz ® Xj)yck @ cn—k>
1=0

= YUK ) (X eni)

1=0

n
- Z‘Si,k 6j,n—k - 6i+j,'n.

i=0
= (Xiyj,cn)
So the multiplication in B* is as in k[X].
Therefore if we define ¢ : B* — k[X], by ¢(X:) = X', then ¢ is an
isomorphism of k-algebras.

If C is a k-coalgebra and A is a k-algebra, we give Homi(C, A) an algebra
structure by f+g=Mao(f®g)oAc or (F+9)(0) = ¥ Fleq) gleq) -
for all f,g €Homy(C, A). (f * g is said to be convolution (i?f and g¢) and the
unit U oe(c) = e(c)U(1x) for all c € C.

Suppose H is a bialgebra with underlying algebra H4 and coalgebra H®.
As the above way Hom(H¢, H4) becomes an algebra and U o ¢ is its unit.
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Definition 1.1.13 An element S € Hom(H¢, H*) which is inverse under
* 1s called an antipode for H.
A bialgebra with an antipode is a Hopf algebra.

Thus the k-linear map S : H — H is an antipode if and only if

SxI=T+«+S=Uocor » h(1)S(hw) =_S(h(1))(hw) = e(h)U(1),
(h) (R)
for all h € H.

Of course if H has an antipode, it is unique. See the properties of the antipode

S of a k-Hopf algebra H in [1, 2.1.4].

1.2 Coderivations of a coalgebra

Definition 1.2.1 Suppose (C,A,¢€) is a coalgebr over k. A k-linear map
X : C — C is called a coderivation of C if the diagram
C X, C
A 1A
cec 5 CecC
commutes where X(a ®b) = X(a) ® b+ a ® X(b).
Proposition 1.2.2 Suppose (C,A,¢) is a k-coalgebra and X : C — C
is a coderivation of C. Then X*:(C* — (C* is a derivation of C*.

Proof. By (1.1.6), (C*, M, U) is a k-algebra with M = A*opand U = ¢*.




