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ABSRACT

Text Classification Based on Probabilistic

Learning Models

By
Heydar Davoodi

As the amount of information available to human increases,
the role of automatic information organization becomes more
important. The area of classifying the text documents into several
groups has been the subject of intensive researches during the last
decade.

Classification is an important method for data analysis and
there are several techniques in artificial intelligence and pattern
recognition which have been proposed for this task, but these
methods can not be applied efficiently in text classification task
because in this problem we will encounter a high number of
features. This thesis aims to investigate the concepts that must be
considered in text classification task, like: feature extraction
document representation, feature subset selection and proper
machine learning algorithms for this task. In feature subset
selection we have tried to show the relation between probabilistic

classification and criterion which is used in our work. Also, we

v




completely considered a probabilistic framework for text
classification. In this framework the probability of belonging one
document to all classes will be estimated. In this method we use
Bayesian networks as an effective and efficient way of saving a
joint probability distribution of variables. Then we have proposed
architecture for building a knowledge model using Bayesian
Networks. By measuring the performance and comparing the
results with one classic algorithm, which commonly used in
Information Retrieval, we have shown that these proposed
approaches are efficient. We used Reuters data for learning and
test and experiments have been carried out in 5 categories of
these data. Finally we have shown that inference is also efficient

in the proposed models.
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