IN THE NAME OF GOD

DYNAMICS AND INTEGRABILITY OF GENERALIZED SINE-GORDON EQUATIONS

Ву Abdoulrasool Gharaati Jahromy

THESIS

SUBMITTED TO THE SCHOOL OF GRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY (Ph.D.)

> IN **PHYSICS** SHIRAZ UNIVERSITY SHIRAZ, IRAN

Evaluated and Approved by the Thesis Committee As: Excellent

M. H. Dehghani, Ph.D., Assistant Prof. of Physics (Chairman)

N. Ghahremani, Ph.D., Associate Prof. of Physics

M. M. Golshan, Ph.D., Assistant Prof. of Physics

M. Sarbishahi, Ph.D., Associate Prof. of Physics (Ferdowsi University)

October 1999

Dedicated

То

my wife who bore hard during the course of my research

ACKNOWLEDGMENT

I would like to express my sincere gratitude and appreciation to Prof.

N. Riazi for his constant help, guidance and encouragement during the course of my research. Helpful discussions with Dr. M. H. Dehghani is gratefully acknowledged.

ABSTRACT

DYNAMICS AND INTEGRABILITY OF GENERALIZED SINE-GORDON EQUATIONS

by

Abdoulrasool Gharaati Jahromy

We have studied a few different topics in the dynamics of the sine-Gordon equation and its modified forms.

We introduce a few generalizations of the sine-Gordon equation which lead to the ordinary sine-Gordon equation as limiting cases. We modify this in three ways. Firstly, we multiply the Lagrangian density of the sine-Gordon equation by a power-law function of the scalar field. The total energy for the static and dynamic solutions are obtained accordingly. We perform the calculation for the static case, and show that the total energy of the moving solitary waves satisfies the Einstein relation. In the second approach, we define the potential function as $V(\phi) = a(1 - \cos b\phi)$ in which a has different values for positive and negative ϕ and b is a constant. Finally, we modify the sine-Gordon system by adding the term $\epsilon(1-\cos 2\phi)$ to the Lagrangian density of the ordinary sine-Gordon

system, and derive analytically its solitary wave solutions and some of their properties.

We study the dynamics of solitons in inhomogeneous media in two ways. The inhomogeneity of the first kind is introduced via spatially varying parameters a and b. Like a classical particle, the kink bypasses a potential barrier, as long as its kinetic energy is more than the potential height. However, if the barrier is thin enough, a 'tunneling effect' happens. Secondly, we implement the inhomogeneity into the sine-Gordon equation by replacing a with a function of position and adding a new term to the equation. The motion of the kink's center of mass is shown to be governed by the Newton's second law. We study some illustrative examples by numerical calculations.

Finally, we conjecture a method to determine whether a nonlinear model is integrable or not. In this method, we employ a linear perturbation analysis to investigate the relationship with integrability. According to our conjecture, a system is integrable, if the corresponding perterbative eigen-value equation has at most one bound state with zero frequency, which results from a symmetry of the solution. We study two kinds of dynamical equations. First we consider equations which are Lorentz covariant, and then equations which have Galilean invariance.

TABLE OF CONTENTS

С	ONT	ENTS		PAGE
L	IST (OF FIG	GURES	ix
1	soi	LITAR	Y WAVES AND SOLITONS	1
	1.1	Introd	uction	. 1
	1.2	Solitar	y Waves and Solitons	. 3
	1.3	Some	Nonlinear Systems with Soliton Solutions	. 9
		1.3.1	Korteweg-de Veries Equation (KdV)	. 9
		1.3.2	Nonlinear Schrödinger Equation (NLS)	. 13
		1.3.3	Sine-Gordon Equation (SG)	. 16
2	AP	PLICA	TIONS OF THE SINE-GORDON EQUATION	ON 21
	2.1	Couple	ed Pendulums	. 22
	2.2	Joseph	nson Transmission Lines	. 25
	2.3	Self-In	nduced Transparency	. 32
		2.3.1	Introduction	. 32
		2.3.2	The Quantum Mechanics	. 34
		2.3.3	Derivation of the Sine-Gordon Equation: Station	1-
			ary Atoms	. 36

		2.3.4 Physical Interpretation	40
3	soi	ITONS OF THE SINE-GORDON EQUATION	43
	3.1	Separation of Variables	44
	3.2	Single Soliton (Anti-Soliton) Solutions	45
	3.3	Double-Kink Solution	48
	3.4	Kink Antikink Solution	52
	3.5	Breather Solution	53
	3.6	Solution Generated by Bäcklund Transformations	55
4	GE	NERALIZED SINE-GORDON EQUATION	64
	4.1	Energy-Momentum Tensor of the Sine-Gordon System .	65
	4.2	Multiplication by a Scalar Function	66
	4.3	Stepwise Constant Parameters	71
	4.4	Soliton Confinement	74
5	DY	NAMICS OF THE SINE-GORDON SOLITONS IN	Γ
	IN	HOMOGENEOUS MEDIA	78
	5.1	Different Types of Inhomogeneity	79
		5.1.1 Inhomogeneity of The First Kind	82
		5.1.2 Inhomogeneity of The Second Kind	87
	5.2	Dynamics of the Sine-Gordon Kinks in Inhomogeneous	
		Media	95
	٠,	Promples	97

6	INT	TEGRABLE SYSTEMS	107
	6.1	Definition of an Integrable System	108
	6.2	Methods of Determining Integrability	109
		6.2.1 Lax Method	109
		6.2.2 Painleve Method	111
	6.3	Another Conjecture for Determining Integrability	114
	6.4	Examples	115
		6.4.1 Equations with Lorentz Covariant	115
		6.4.2 Equations with Galilean Invariance	124
	6.5	Conclusion and Conjecture	128
7	СО	NCLUSIONS AND RESULTS	130
A . :	PAIN	NLEVE TRANSCENDENTS	140
REFERENCES			141
ΑE	BSTF	ACT AND TITLE PAGE IN PERSIAN	

List of Figures

1.1	Schematic representation of a linear (a), and nonlinear (b)	
	responses of a system to input signals	4
2.1	Sketch of the elastically coupled pendulums	22
2.2	Scheme of a Josephson system (a), and its wave function	
	(b)	26
2.3	Sketch of a long Josephson junction (a), and schematic	
	representation of its electrical equivalent for a small ele-	
	ment (b)	30
3.1	k-k collision	49
3.2	Kink acceleration as a function of kink position for various	
	initial velocities $(k + k \rightarrow k + k)$	51
3.3	Kink acceleration as a function of kink position for the	
	critically bound $k-k$ pair	54
3.4	Breather solution	56

3.5	The $k-\tilde{k}$ acceleration as a function of x_k , for various	
	values of m	57
3.6	Bianchi diagram for the permutability theorem	60
3.7	Third-generation Bianchi diagram	61
3.8	Fourth-generation Bianchi diagram	62
4.1	Momentum transfer between two kinks belonging to dif-	
	ferent sectors in the modified sine-Gordon (MSG) equation.	73
4.2	A heavy kink-antikink pair annihilating to an almost mass-	
	less pair in the MSG system	73
4.3	A low mass kink-antikink pair produces a transient heavy	
	pair, which subsequently annihilates into the original pair	
	(MSG system)	74
4.4	The energy density of the kink solution in the deformed	
	sine-Gordon system for various values of ϵ	75
4.5	Excited subkinks oscillate within a kink of the deformed	
	sine-Gordon equation	76
4.6	The collision between two kinks of the deformed sine-	
	Gordon equation $(v_1 = -v_2 = 0.3)$	77
5.1	Kink colliding with a potential step for $v_k = 0.01$. The	
	kink crossed over	83

5.2	Kink colliding with a potential step for $v_k = 0.1$. The kink	
	is reflected.	84
5.3	Kink moving across a linearly increasing refractive index.	85
5.4	Kink moving across a potential slope (second kind)	89
5.5	Kink passing over a potential step for $T>U$	90
5.6	Kink is reflected by potential step for $T < U$	91
5.7	Classical tunneling of a kink through a thin barrier with	
	T < U.	92
5.8	For a wider barrier and the same kinetic energy as Fig.	
	(5.7), there is no tunneling.	93
5.9	Time evolution of a kink with $V(x) = a_c x$ where $a_c =$	
	0.0005 , and $a_o=1$. The kink has initial velocity $v_o=0$.	99
5.10	0 The same as Fig. (5.9) except $v = 0.125$	100
5.1	1 Time evolution of a kink with $V(x) = \frac{1}{2}kx^2$ where $k =$	
	0.001 and zero initial velocity.	101
5.1	2 Time evolution of a kink against a potential barrier, $d = 1$,	
	$h=0.1$ and $v_o=-0.25$ are assumed	102
5.1	3 The same as Fig. (5.12) except $v = -0.4$	103
5.1	14 The same as Fig. (5.12) except $d=0.25$. This case re-	
	sembles the tunneling effect	104

6.1	The linearized potential of the double sine-Gordon equa-	
	tion and two bound states of it for $\epsilon=0.5$. The corre-	
	sponding ω 's are 0.1674 and 1.4912	118
6.2	The linearized potential of the double sinh-Gordon equa-	
	tion for $n=1$ and $z=0.01$, 0.25, 0.50, 0.75, and	
	1.0	120
6.3	The linearized potential and excited states of the double	
	sinh-Gordon equation for $n = 1$, and $z = 0.25$	121
6.4	The linearized potential of the modified sine-Gordon equa-	
	tion for $s = 0.6, 0.8 \ 1.0, 1.2 \ and 1.4. \dots$	123
6.5	The first bound state of the modified sine-Gordon equation	
	for (a) $s = 0.95, \omega = 0.1513$ and (b) $s = 1.05, \omega = 0.1268$.	123

Chapter 1

SOLITARY WAVES AND SOLITONS

1.1 Introduction

Description and interpretation of phenomena in the universe by using linear physics are more or less approximate. There are many phenomena in nature that we cannot easily describe and interpret, because their dynamical equation are nonlinear. Therefore, many scientists believe that one of the best fundamental routes to understanding the nature is tendency toward the nonlinear physics.

Although it is more than one century from the birth of the nonlinear physics, but there was no considerable progress until recently. One of the main reasons for this delay was computational difficulties. Furthermore, earlier in this century, the birth of quantum mechanics and its successful results attracted more physicists. Therefore, the nonlinear science was almost forgotten. Fortunately, during the past few decades scientists have paid much more attention to this subject, and it is observed that a considerable number of papers are allocated to the nonlinear science, particularly in fields such as physics, mathematics and chemistry. There are particular subjects such as chaos, fractals and solitons which cannot be interpreted by linear physics at all. These subjects and related nonlinear phenomena in physics, have created another subgroup in physics which is known as nonlinear physics.

This thesis is devoted to the soliton theory, which has proven to be a very attractive and exciting topic. This fascinating theory has been applied in various fields such as field theory, optics, fundamental particle physics and solid state. One of the most attractive characteristics of a soliton is its pseudo-particle behavior.

The main purpose of this thesis is to present this aspect of soliton behavior. The material is presented as follows. In this chapter, I briefly review the historical progress in the study of nonlinear systems, introduce a few fundamental definitions and give some examples. In the second Chapter, some applications of the sine-Gordon equation are presented. Because the main equation studied in this thesis is the sine-Gordon equation, I will discuss different types of soliton solutions of the sine-Gordon

equation in Chapter three. By introducing a few generalizations of the sine-Gordon equation in Chapter four, two methods are examined which lead to the sine-Gordon equation as limiting cases. In Chapter five, I will deform the sine-Gordon equation in another way and derive its analytical and numerical solutions. In this case, the kink motion exactly resembles that of a classical particle moving in an external potential.

There are various methods for determining the integrability of nonlinear equations. These methods are usually cumbersome and tedious. In Chapter six, I will introduce a conjecture to determine the integrability of a class of nonlinear equations.

Finally, I will present the conclusions briefly and summarize the results in Chapter seven.

1.2 Solitary Waves and Solitons

Since solitary waves and soliton solutions are derived from nonlinear equations, it is preferable to define a nonlinear differential equation, [Boyce and Diprima, 1977]:

The differential equation

$$F(x, y, y', y'', ..., y^{(n)}) = 0 (1.1)$$

is said to be linear if F is a linear function of the variables, $y, y', y'', ..., y^{(n)}$.