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ABSTRACT

DYNAMICS AND INTEGRABILITY OF
GENERALIZED SINE-GORDON EQUATIONS

by

Abdoulrasool Gharaati Jahromy

We have studied a few different topics in the dynamics of the sine-Gordon
equation and its modified forms.

We introduce a few generalizations of the sine-Gordon equation which
lead to the ordinary sine-Gordon equation as limiting cases. We modify
this in three ways. Firstly, we multiply the Lagrangian density of the sine-
Gordon equa,tion.by a power-law function of the scalar field. The total
energy for the static and dynamic solutions are obtained accordingly.
We perform the calculation for the static case, and show that the total
energy of the moving solitary waves satisfies the Einstein relation. In
the second approach, we define the potential function as V(é) = a(l -
cos bp) in which @ has different values for positive and negative ¢ and b
is a constant. Finally, we modify the sine-Gordon system by adding the

term €(1 — cos 2¢) to the Lagrangian density of the ordinary sine-Gordon
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system, and derive analytically its solitary wave solutions and some of
their properties.

We study the dynamics of solitons in inhomogeneous media in two
ways. The inhomogeneity of the first kind is introduced via spatially
varying parameters a and b. Like a classical particle, the kink bypasses a
potential barrier, as long as its kinetic energy is more than the potential
height. However, if the barrier is thin enough, a ’tunneling effect’ hap-
pens. Secondly, we implement the inhomogeneity into the sine-Gordon
equation by replacing a with a function of position and adding a new
term to the equation. The motion of the kink’s center of mass is shown
to be governed by the Newton’s second law. We study some illustrative
examples by numerical calculations.

Finally, we conjecture a method to determine whether a nonlinear
model is integrable or not. In this method, we employ a linear perturba-
tion analysis to investigate the relationship with integrability. According
to our conjecture, a system is integrable, if the corresponding perterbative
eigen-value equation has at most one bound state with zero frequency,
which results from a symmetry of the solution. We study two kinds
of dynamical equations. First we consider equations which are Lorentz

covariant, and then equations which have Galilean invariance.
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Chapter 1

SOLITARY WAVES AND

SOLITONS

1.1 Introduction

Description and interpretation of phenomena in the universe by using
linear physics are more or less approximate. There are many phenomena
in nature that we cannot easily describe and interpret, because their
dynamical equation are nonlinear. Therefore, many scientists believe
that one of the best fundamental routes to understanding the nature is
tendency toward the nonlinear physics.

Although it is more than one century from the birth of the nonlinear
physics, but there was no considerable progress until recently. One of the

main reasons for this delay was computational difficulties. Furthermore,




earlier in this century, the birth of quantum mechanics and its successful
results attracted more physicists. Therefore, the nonlinear science was
almost forgotten. Fortunately, during the past few decades scientists
have paid much more attention to this subject, and it is observed that
a considerable number of papers are allocated to the nonlinear science,
particularly in fields such as physics, mathematics and chemistry. There
are particular subjects such as chaos, fractals and solitons which cannot
be interpreted by linear physics at all. These subjects and related non-
linear phenomena in physics, have created another subgroup in physics
which is known as nonlinear physics.

This thesis is devoted to the soliton theory, which has proven to be
a very attractive and exciting topic. This fascinating theory has been
applied in various fields such as field theory, optics, fundamental particle
physics and solid state. One of the most attractive characteristics of a
soliton is its pseudo-particle behavior.

The main purpose of this thesis is to present this aspect of soliton
behavior. The material is presented as follows. In this chapter, I briefly
review the historical progress in the study of nonlinear systems, introduce
a few fundamental definitions and give some examples. In the second
Chapter, some applications of the sine-Gordon equation are presented.
Because the main equation studied in this thesis is the sine-Gordon equa-

tion, I will discuss different types of soliton solutions of the sine-Gordon




equation in Chapter three. By introducing a few generalizations of the
sine-Gordon equation in Chapter four, two methods are examined which
lead to the sine-Gordon equation as limiting cases. In Chapter five, I will
deform the sine-Gordon equation in another way and derive its analytical
and numerical solutions. In this case, the kink motion exactly resembles
that of a classical particle moving in an external potential.

There are various methods for determining the integrability of nonlin-
ear equations. These methods are usually cumbersome and tedious. In
Chapter six, [ will introduce a conjecture to determine the integrability
of a class of nonlinear equations.

Finally, I will present the conclusions briefly and summarize the re-

sults in Chapter seven.

1.2 Solitary Waves and Solitons

Since solitary waves and soliton solutions are derived from nonlinear
equations, it is preferable to define a nonlinear differential equation,
[Boyce and Diprima, 1977]:

The differential equation

F(z,y,yy"y™) =0 (1.1)

s said to be linear if Fis a linear function of the variables, y,y",y", .., y),




