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Abstract 
In this thesis, the works are divided in two categories, theoretical and experimental works. 

A theoretical approach based on a tight-binding model is developed for studying the 

effects of finite concentration gas adsorption (for what are known as diatomic, triatomic 

and quadratomic gas molecules in the general forms denoted by XY, XY2 and XY3, 

respectively) on electronic properties of armchair graphene nanoribbons (AGNRs). To 

consider the edge effects on electronic properties of pure AGNRs for the first time, two 

hopping parameters, for hydrogen–carbon and carbon–carbon nearest neighbor hopping, 

are considered. We found, for some specified values of hopping integrals and random on-

site energies, that adsorbed molecule AGNRs act as donors or acceptors, which is 

consistent with reported experimental results for CO, NO2, O2, N2, CO2 and NH3 

adsorption on graphene. 

In experimental work, The cadmium selenide nanoparticle films have been deposited by 

chemical bath deposition method (CBD). Effects of deposition time, pH and annealing 

operation on the optical, structural and electrical properties of  CdSe nanoparticles films 

are studied. The structural and morphological of the samples are investigated by X-ray 

diffraction (XRD), UV-Visible spectrometer and scanning electron microscope (SEM). 

We found, the optical gap, nanoparticles size and density of states near the Fermi level 

are vary by changing pH, increasing deposition time and annealing operation. Our 

measured conductivities data are consistent with the theoretical hopping model for the 

electrical transport description.  
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1.1 Introduction to Nanotechnology 
 

    A technological journey is underway a trip into very small spaces. The journey is led by 

an eclectic band of engineers and scientists from all disciplines biology, chemistry, physics 

and mathematics who are pooling their talents to create a new field called 

“nanotechnology”. The destination of this journey is not yet entirely clear. Are these 

nanotech pioneers leading us into a new world of bountiful productivity, or into a 

dangerous ravaged landscape? 

    One focus of the Nanotech Pioneers is clear: they are out to change the way that we 

build things now with bulk materials, whittling them down or molding them, to a model 

that is more like that used by living things, creating objects with defined features that 

extend to the molecular level. Nanotech seeks to “...rebuild the world one molecule (or 

even one atom) a time”, or so the slogan goes. But is the world really in need of 

rebuilding? 

    In 1959, the great physicist of our time Professor Richard Feynman gave the first 

illuminating talk on nanotechnology, which was entitles as: There’s Plenty of Room at 

the Bottom. He consciously explored the possibility of “direct manipulation” of the 

individual atoms to be effective as a more powerful form of ‘synthetic chemistry’. 

Feynman talked about a number of interesting ramifications of a ‘general ability’ to 

manipulate matter on an atomic scale. He was particularly interested in the possibility of 

denser computer circuitry and microscopes that could see things much smaller than is 

possible with ‘scanning electron microscope’. The IBM research scientists created today’s 

‘atomic force microscope’ and ‘scanning tunneling microscope’, and there are other 

important examples [1].    

1.2 Nanomaterials  
    The changing in material properties with size was already reported in the nineteenth 

century by Michael Faraday. In the early twentieth century, work on glasses containing 

CdS showed that there was a red-shift in the absorption threshold with the growth of CdS 

particle size. [2] However, it was not until 1982 that this effect was related to the change of 
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the band gap with size in materials [3, 4]. In the past two decades, research on materials 

with sizes in the nanometer regime has gained enormous momentum. This can be gauged 

by the number of books and review articles (for example, see references [5-6]) that have 

been published in recent years on nanoscale materials, and also by the fact that now an 

entire ten volume encyclopedia exists, dedicated to this research area. [7]. The interest in 

nanomaterials is due to the fact that they have many interesting optical, electronic and 

chemical properties that are size-dependent. These materials have potential applications in 

developing new catalysts, [8, 9] nanosensors, [10, 11] and optoelectronic nanodevices [12-

14]. Another important area of application of nanomaterials is in computer chips. Already 

chips are lithographed with patterns that are ~100 nm. Even smaller structures (roughly 20 

nm) will be required to realize higher speeds and storage capacities. One can define 

nanomaterials as fragments of solids that have dimensions in the range of 1-50 nm. Solids 

and molecules have been studied for many years now and their properties are fairly well 

understood. However, nanomaterials that lie in the domain that is in between these two 

extremes, exhibit properties that are entirely different from either of them. The reason for 

such a difference in behavior stems partly from the fact that in case of nanomaterials the 

surface to volume ratio is extremely high. It ranges from about 90% for a 10 °A particle to 

~10% for a 100 °A particle; in bulk materials the surface effects can usually be neglected. 

Surface atoms, thus, play an important role in governing the electronic, optical and 

thermodynamic properties in these nanomaterials. For example, bulk cadmium sulfide 

melts at about 1600 C° , whereas a 25 °A  nanocrystal of the same material has a melting 

temperature of about 400 C°  [15]. Such effects are observed because of the higher surface 

energy of the nanomaterials. Another effect of the higher surface to volume ratio is the 

elevation of pressure required for a phase transformation in nanomaterials [16]. High 

pressure X-ray diffraction in a number of semiconductors such as CdS [17] and CdSe [18-

20] has revealed that the pressure required to induce a transformation to a more dense 

phase increases with a decrease in the nanocrystal size. Another reason for such a marked 

difference in the behavior of nanomaterials is that the wavelength of the electron 

wavefunctions in these materials is comparable to the size of the particle. The density of 

states changes as one goes from the bulk to quantum films that are confined in one 

dimension to quantum wires confined in two dimensions and finally, the nanocrystals or 

quantum dots that are confined in all three dimensions. This variation is shown 

schematically in Fig. 1.1. The variation of density of states versus energy for confined 
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systems does not follow the typical 2
1

−
E dependence, as in the case of an infinite solid. In 

the present thesis, we focus on materials that are confined in all the three dimensions, 

namely the quantum dots, also known as nanocrystals (when they are crystalline) or 

nanoparticles (a general term that includes noncrystalline quantum dots as well). 

 
Figure 1.1: Evolution of the density of states with dimensionality showing the variation of density of 
states with energy for the infinite bulk solid, a quantum film, a quantum wire and a quantum dot. 
(Adapted from Ref. [21]) 
 

    Based on their electronic structure, nanomaterials can be divided into two broad classes: 

metals and semiconductors. An important difference between metals and semiconductors is 

the possibility of tuning the band gap in semiconductors by changing their size in the 

nanometer regime. In case of metals, since there is no band gap, one needs to go down to 

very low sizes in order to open up a gap between the electronic states; this is the situation 

in the case of molecules or small clusters. In the band dispersions, the curvature of the 

bands at the external points is high compared to the curvature at the center of the bands. 

The changes in band structure with size depend on the band curvatures, and the change is 

more rapid where the band curvature is high. For semiconductors, the valence and 

conduction band edges decide the electronic properties and they vary rapidly with 

changing the size due to the higher curvature. The evolution of the density of states on 

going from the bulk semiconductor crystal to the nanocrystal is shown in Fig. 1.2 The 

continuum of states in the bulk semiconductor gives rise to the valence and the conduction 

bands separated by a band gap. On reducing the size of the particles of the semiconductor 

material, the band edges shift giving rise to an increase in the band gap and the energy 



 4

levels close to the edges become discrete as shown in Fig. 1.2 The reason for the band 

edges to become discrete before the band center is the fact that the density of states is very 

low near the band edges and it decreases further as one reduces the size, thus making these 

edges discrete before affecting the center of the band where the density of states is 

considerably higher. This is also known the top-down approach since one approaches the 

nanocrystals starting from the bulk material. In the bottom-up approach, the evolution of 

the cluster can also be thought of as a number of individual molecules adding up together 

and forming bands starting from the single molecule as shown in Fig. 1.2. 

   
Figure 1.2: Schematic changes in the density of states on going from a bulk crystal to a nanocrystal to 

molecule. 

1.2.1 Theoretical Aspects 

    In a bulk semiconductor, an electron and a hole are formed upon excitation across the 

band gap. As the wavefunctions of electrons and holes are delocalized over a number of 

ions or molecules that make the material and also because of the large dielectric constant 

of the material, the binding energy of the electron and the hole forming an exciton is 

relatively small. The average separation between the electron and the hole in the exciton is 

known as the Bohr exciton radius, Ba . It is typically of the order of a few nanometers in 

most semiconductors. Such a weakly bound electron-hole pair is also known as a Wannier 

exciton, which is transported through the semiconductor crystal until it is trapped by defect 

sites, annihilated by collision with another exciton, or relaxed by radiative recombination 
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of the electron and the hole. What happens when the size of the semiconductor material is 

reduced so that it is comparable to Ba ? We can view this as the simple particle-in-a-box 

problem. The solution of the Schrodinger equation gives the eigenfunctions                                                  

L
nkkxSin

L
x nn

πψ == ,)(
2
1)(                                                                                (1.1) 

Whose corresponding energy eigenvalues are given by:                                        
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As the size of the box is reduced, the energy level spacing increases since it is inversely 

proportional to 2L , the square of the length of the box. Thus, the kinetic energy, nE , and 

the excitation energy, separation between two energy levels ( mn EE − ), of this particle 

increases upon confinement. This simple picture however does not give a quantitative 

measure of the change in band gap with size. There are various methods to quantitatively 

estimate the electronic properties of nanocrystals which we discuss in brief in the 

following subsection. 
 

1.2.2 Effective Mass Approximation 

    In crystalline materials, the energy-momentum relationship is defined by a complex set 

of equations. This relationship is known as the band dispersion of the crystal [22]. 

Semiconductors or insulators differ from metals in exhibiting an energy gap between the 

valence band and the conduction band. If the charge carrier has a small amount of kinetic 

energy then the simplified description in Fig. 1.3 is often applicable for a single particle 

picture. 

At low energies, near the band edges, delocalized electron (or hole) waves follow a 

quadratic equation describing the wave vector, k dependence of energy, E 

*

22

2m
kE h

=                                                                                                                           (1.3) 

Where *m  is the effective mass of the charge carrier (electron or hole). The motion of 

single charge carriers under the influence of external fields is described by this relation. 

Within the effective mass approximation (EMA), one can also describe the motion of a 

coupled electron-hole pair, the exciton. To use the effective mass approximation for 

describing the band gap variation with size for nanoparticles, one needs to solve the 

Schrodinger equation for the envelope function ψ : 
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Where the subscripts e and h refer to the electron and the hole with r and m being the 

position vector and mass, respectively, and heeh rrr −= . 0ε  and ε are the permittivity in 

vacuum and the relative dielectric constant of the material. The potential 0V  is assumed to 

be zero inside the nanoparticle and infinite outside for the EMA calculation corresponding 

to an infinite barrier height. Using a trial wave function the above equation can be solved 

by approximate methods. 

 
Figure 1.3: Schematic band dispersion: energy-momentum relation for a direct band gap 

semiconductor. 

  

    Brus [23-25] considered a model for the particles that incorporates (a) the effective mass 

approximation for the kinetic energy of the electron and the hole, (b) an electrostatic 

potential term from classical continuum polarizability theory and (c) tunneling of electrons 
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and holes out of the crystallite at the surface in the case of a finite barrier height. For an 

infinite barrier height the model yields the following expression for the band gap, RE , of 

the quantum dot, 

*
2

2
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248.08.1]11[
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he
gR E

R
e

mmR
EE −−++=

ε
πh                                                                (1. 5) 

Where gE  is the bulk band gap, and R is the radius of the quantum dot. The third term 

arises due to the Coulomb attraction, and the fourth term due to the spatial correlation 

between the electron and the hole is negligible. The effective energy Rydberg *
RyE , in meV 

is defined as: 

100
2

* )(18.13605 −+=
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Kayanuma [26] has identified two limiting cases depending upon the ratio of the radius, R, 

of the quantum dot to the Bohr exciton radius, Ba  of the bulk solid. For 1>>
Ba

R  the 

exciton can be pictured as a particle moving inside the quantum dot with only little 

increment in energy due to the confinement. This is the weak confinement regime. In the 

strong confinement regime where 1<<
Ba

R , confinement effects obviously dominate. It 

was pointed out that in this regime, the electron and hole should be viewed as individual 

particles in their respective single particle ground states with little spatial correlation 

between them. Kayanuma further found that the strong confinement regime is not only 

limited to 1<<
Ba

R  but the effects are seen up to BaR 2= . This is the regime where the 

effective mass approximation as given by Brus can be applied; however, we point out in 

this thesis that Eq.1.5 overestimates the band gap for all sizes, with the mismatch between 

the experiments and the calculated results increasing progressively for decreasing particle 

size. 

    Some improvement over the EMA with an infinite barrier was made when Schmidt and 

Weller [27] used a configuration interaction approach for the electron and the hole, treating 

it like a two-electron atom. They also used the Hylleraas functions and a perturbation 

expansion in R to obtain band gap energies slightly better than those described by the 

single particle EMA [28]. 
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1.3 Graphene “Mother of all graphitic forms” 
      

    Graphene is a rapidly rising star on the horizon of materials science and condensed 

matter physics. This strictly two-dimensional material exhibits exceptionally high crystal 

and electronic quality, and, despite its short history, has already revealed a cornucopia of 

new physics. 

     Carbon is the materia prima for life and the basis of all organic chemistry. Because of 

the flexibility of its bonding, carbon-based systems show an unlimited number of different 

structures with an equally large variety of physical properties. 

 
Figure 1.4: (Color online) Graphene (top left) is a honeycomb lattice of carbon atoms. Graphite (top 
right) can be viewed as a stack of graphene layers. Carbon nanotubes are rolled-up cylinders of 
graphene (bottom left). Fullerenes ( 60C ) are molecules consisting of wrapped graphene by the 
introduction of pentagons on the hexagonal lattice. . 
 

    These physical properties are, in great part, the result of the dimensionality of these 

structures. Among systems with only carbon atoms, graphene a two dimensional (2D) 

allotrope of carbon plays an important role since it is the basis for the understanding of the 

electronic properties in other allotropes. Graphene is made out of carbon atoms arranged 

on a honeycomb structure made out of hexagons (see Fig. 1.4), and can be thought of as 

composed of benzene rings stripped out from their hydrogen atoms (Pauling, 1972). 

Fullerenes (Andreoni, 2000) are molecules where carbon atoms are arranged spherically, 

and hence, from the physical point of view, are zero dimensional objects with discrete 
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energy states. Fullerenes can be obtained from graphene with the introduction of pentagons 

(that create positive curvature defects), and hence, fullerenes can be thought as wrapped-up 

graphene. Carbon nanotubes (Saito et al., 1998; Charlier et al., 2007) are obtained by 

rolling graphene along a given direction and reconnecting the carbon bonds. Hence carbon 

nanotubes have only hexagons and can be thought of as one-dimensional (1D) objects. 

Graphite, a three dimensional (3D) allotrope of carbon, became widely known after the 

invention of the pencil in 1564 (Petroski, 1989), and its usefulness as an instrument for 

writing comes from the fact that graphite is made out of stacks of graphene layers that are 

weakly coupled by van der Waals forces. Hence, when one presses a pencil against a sheet 

of paper, one is actually producing graphene stacks and, somewhere among them, there 

could be individual graphene layers. Although graphene is the mother for all these 

different allotropes and has been presumably produced every time someone writes with a 

pencil, it was only isolated 440 years after its invention (Novoselov et al., 2004). The 

reason is that, first, no one actually expected graphene to exist in the Free State and, 

second, even with the benefit of hindsight, no experimental tools existed to search for one-

atom thick flakes among the pencil debris covering macroscopic areas (Geim and 

MacDonald, 2007). Graphene was eventually spotted due to the subtle optical effect it 

creates on top of a chosen SiO2 substrate (Novoselov et al., 2004) that allows its 

observation with an ordinary optical microscope (Abergel et al., 2007; Blake et al., 2007; 

Casiraghi et al., 2007). Hence, graphene is relatively straightforward to make, but not so 

easy to find.                                                                                                                                                    

    The structural flexibility of graphene is reflected in its electronic properties. The 2Sp  

hybridization between one −s orbital and two −p orbitals leads to a trigonal planar 

structure with a formation of a δ -bond between carbon atoms that are separated by 1.42 

Å. The −δ band is responsible for the robustness of the lattice structure in all allotropes. 

Due to the Pauli principle, these bands have a filled shell and, hence, form a deep valence 

band. The unaffected p-orbital, which is perpendicular to the planar structure, can bind 

covalently with neighboring carbon atoms, leading to the formation of a −π band. Since 

each −p orbital has one extra electron, the −π band is half filled. Half-filled bands in 

transition elements have played an important role in the physics of strongly correlated 

systems since, due to their strong tight-binding character, the Coulomb energies are very 

large, leading to strong collective effects, magnetism, and insulating behavior due to 

correlation gaps or Mottness (Phillips, 2006). In fact, Linus Pauling proposed in the 1950s 
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that, on the basis of the electronic properties of benzene, graphene should be a resonant 

valence bond (RVB) structure (Pauling, 1972). RVB states have become popular in the 

literature of transition metal oxides, and particularly in studies of cuprate oxide 

superconductors (Maple, 1998). This point of view should be contrasted with 

contemporaneous band structure studies of graphene (Wallace, 1947) that found it to be a 

semimetal with unusual linearly dispersing electronic excitations called Dirac electrons.           

While most current experimental data in graphene support the band structure point of view, 

the role of electron-electron interactions in graphene is a subject of intense research. It was 

P. R. Wallace who in 1946 wrote the first paper on the band structure of graphene and 

showed the unusual semi-metallic behavior in this material (Wallace, 1947). At that time, 

the thought of a purely 2D structure was not reality and Wallace’s studies of graphene 

served him as a starting point to study graphite, an important material for nuclear reactors 

in the post World War II era. During the following years, the study of graphite culminated 

with the Slonczewski-Weiss-McClure (SWM) band structure of graphite, which provided a 

description of the electronic properties in this material (McClure, 1957; Slonczewski and 

Weiss, 1958) and was successful in describing the experimental data (Boyle and Nozières 

1958; McClure, 1958; Spry and Scherer, 1960; Soule et al., 1964; Williamson et al., 1965; 

Dillon et al., 1977). From 1957 to 1968, the assignment of the electron and hole states 

within the SWM model were opposite to what is accepted today. In 1968,. (Schroeder et 

al., 1968) established the currently accepted location of electron and hole pockets 

(McClure, 1971). The SWM model has been revisited in recent years because of its 

inability to describe the van der Waals–like interactions between graphene planes, a 

problem that requires the understanding of many-body effects that go beyond the band-

structure description (Rydberg et al., 2003). These issues, however, do not arise in the 

context of a single graphene crystal but they show up when graphene layers are stacked on 

top of each other, as in the case, for instance, of the bilayer graphene. Stacking can change 

the electronic properties considerably and the layering structure can be used in order to 

control the electronic properties. One of the most interesting aspects of the graphene 

problem is that its low energy excitations are massless, chiral, Dirac fermions. In neutral 

graphene, the chemical potential crosses exactly the Dirac point. This particular dispersion, 

that is only valid at low energies, mimics the physics of quantum electrodynamics (QED) 

for massless fermions except for the fact that in graphene the Dirac fermions move with a  

speed FV , which is 300 times smaller than the speed of light c. Hence, many of the unusual 
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properties of QED can show up in graphene but at much smaller speeds (Castro Neto et al., 

2006a; Katsnelson et al., 2006; Katsnelson and Novoselov, 2007). Dirac fermions behave 

in unusual ways when compared to ordinary electrons if subjected to magnetic fields, 

leading to new physical phenomena (Gusynin and Sharapov, 2005; Peres, Guinea, and 

Castro Neto, 2006a) such as the anomalous integer quantum Hall effect (IQHE) measured 

experimentally (Novoselov, Geim, Morozov, et al., 2005a; Zhang et al., 2005). Besides 

being qualitatively different from the IQHE observed in Si and GaAlAs (heterostructures) 

device (tone, 1992), the IQHE in graphene can be observed at room temperature because 

of the large cyclotron energies for “relativistic” electrons (Novoselov et al., 2007). In fact, 

the anomalous IQHE is the trademark of Dirac fermion behavior. Another interesting 

feature of Dirac fermions is their insensitivity to external electrostatic potentials due to the 

so called Klein paradox, that is, the fact that Dirac fermions can be transmitted with 

probability 1 through a classically forbidden region (Calogeracos and Dombey, 1999; 

Itzykson and Zuber, 2006). In fact, Dirac fermions behave in an unusual way in the 

presence of confining potentials, leading to the phenomenon of Zitterbewegung, or jittery 

motion of the wave function (Itzykson and Zuber, 2006). In graphene, these electrostatic 

potentials can be easily generated by disorder. Since disorder is unavoidable in any 

material, there has been a great deal of interest in trying to understand how disorder affects 

the physics of electrons in graphene and its transport properties. In fact, under certain 

conditions, Dirac fermions are immune to localization effects observed in ordinary 

electrons (Lee and Ramakrishnan, 1985) and it has been established experimentally that 

electrons can propagate without scattering over large distances of the order of micrometers 

in graphene (Novoselov et al., 2004). The sources of disorder in graphene are many and 

can vary from ordinary effects commonly found in semiconductors, such as ionized 

impurities in the Si substrate, to adatoms and various molecules adsorbed in the graphene 

surface, to more unusual defects such as ripples associated with the soft structure of 

graphene (Meyer, Geim, Katsnelson, Novoselov, Booth, et al., 2007a). In fact, graphene is 

unique in the sense that it shares properties of soft membranes (Nelson et al., 2004) and at 

the same time it behaves in a metallic way, so that the Dirac fermions propagate on a 

locally curved space. Here analogies with problems of quantum gravity become apparent 

(Fauser et al., 2007). The softness of graphene is related with the fact that it has out of  

plane vibrational modes (phonons) that cannot be found in 3D solids. These flexural 

modes, responsible for the bending properties of graphene, also account for the lack of 

long range structural order in soft membranes leading to the phenomenon of crumpling 
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(Nelson et al., 2004). Nevertheless, the presence of a substrate or scaffolds that hold 

graphene in place can stabilize a certain degree of order in graphene but leaves behind the 

so called ripples (which can be viewed as frozen flexural modes). It was realized early on 

that graphene should also present unusual mesoscopic effects (Peres, Castro Neto, and 

Guinea, 2006a; Katsnelson, 2007a0). These effects have their origin in the boundary 

conditions required for the wave functions in mesoscopic samples with various types of 

edges graphene can have (Nakada et al., 1996; Wakabayashi et al., 1999; Peres, Guinea, 

and Castro Neto, 2006a; Akhmerov and Beenakker, 2008). The most studied edges, zigzag 

and armchair, have drastically different electronic properties. Zigzag edges can sustain 

edge (surface) states and resonances that are not present in the armchair case. Moreover, 

when coupled to conducting leads, the boundary conditions for a grapheme ribbon strongly 

affect its conductance, and the chiral Dirac nature of fermions in graphene can be used for 

applications where one can control the valley flavor of the electrons besides its charge, the 

so-called valleytronics (Rycerz et al., 2007). Furthermore, when superconducting contacts 

are attached to graphene, they lead to the development of supercurrent flow and Andreev 

processes characteristic of the superconducting proximity effect (Heersche et al., 2007). 

The fact that Cooper pairs can propagate so well in graphene attests to the robust electronic 

coherence in this material. In fact, quantum interference phenomena such as weak 

localization, universal conductance fluctuations (Morozov et al., 2006), and the Aharonov-

Bohm effect in graphene rings have already been observed experimentally (Recher et al., 

2007; Russo, 2007). The ballistic electronic propagation in graphene can be used for field-

effect devices such as p-n (Cheianov and Fal’ko, 2006; Cheianov, Fal’ko, and Altshuler, 

2007; Huard et al., 2007; Lemme et al., 2007; Tworzydlo et al., 2007; Williams et al., 

2007; Fogler, Glazman, Novikov, et al., 2008; Zhang and Fogler, 2008) and p-n-p(Ossipov 

et al., 2007) junctions, and as “neutrino” billiards (Berry and Modragon, 1987; Miao et al., 

2007). It has also been suggested that Coulomb interactions are considerably enhanced in 

smaller geometries, such as graphene quantum dots (Milton Pereira et al., 2007), leading to 

unusual Coulomb blockade effects (Geim and Novoselov, 2007) and perhaps to magnetic 

phenomena such as the Kondo effect. The transport properties of graphene allow for their 

use in a plethora of applications ranging from single molecule detection (Schedin et al., 

2007; Wehling et al., 2008) to spin injection (Cho et al., 2007; Hill et al., 2007; Ohishi et 

al., 2007; Tombros et al., 2007). Because of its unusual structural and electronic flexibility, 

graphene can be tailored chemically and/or structurally in many different ways: deposition 

of metal atoms (Calandra and Mauri, 2007; Uchoa et al., 2008) or molecules (Schedin et 
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al., 2007; Leenaerts et al., 2008; Wehling et al., 2008) on top; intercalation [as done in 

graphite intercalated compounds ) Dresselhaus et al., 1983; Tanuma and Kamimura, 1985; 

Dresselhaus and Dresselhaus, 2002 ]; incorporation of nitrogen and/or boron in its 

structure (Martins et al., 2007; Peres, Klironomos, Tsai, et al., 2007) [in analogy with what 

has been done in nanotubes  Stephan et al., 1994]; and using different substrates that 

modify the electronic structure (Calizo et al., 2007; Giovannetti et al., 2007; Varchon et 

al., 2007; Zhou et al., 2007; Das et al., 2008; Faugeras et al., 2008). The control of 

graphene properties can be extended in new directions allowing for the creation of 

graphene-based systems with magnetic and superconducting properties (Uchoa and Castro 

Neto, 2007) that are unique in their 2D properties. Although the graphene field is still in its 

infancy, the scientific and technological possibilities of this new material seem to be 

unlimited. The understanding and control of this material’s properties can open doors for a 

new frontier in electronics. As the current status of the experiment and potential 

applications have recently been reviewed (Geim and Novoselov, 2007), in this paper we 

concentrate on the theory and more technical aspects of electronic properties with this 

exciting new material [29]. 

1.4 Graphene Nanoribbons 
    The carbon atoms on the edge of Graphene Nanoribbons have two typical topological 

shapes, namely armchair and zigzag. The analytical wave function and energy dispersion 

of zigzag nanoribbons have been derived by several research groups [30, 31]. For armchair 

GNRs, the analytical forms of wave functions within the low-energy range have been 

worked out based on the effective-mass approximation. It is predicted that all zigzag GNRs 

are metallic with localized states on the edges [30-33] while armchair GNRs are either 

metallic or insulating, depending on their widths[30-34]. To date, there is no general 

expression of the wave function in armchair GNRs. In this paper, we derive a general 

analytical expression of wave function and eigenenergy in armchair GNRs applicable to 

various energy ranges. Due to the quantum confinement, the spectrum breaks into a set of 

subbands and the wave vector along the confined direction becomes discretized, which is 

similar to the case of carbon nanotubes[35, 36]. We observe that the electronic structure of 

perfect armchair GNRs strongly depends on the width of the ribbon. The system, for 

instance, is metallic when n=3m+2 and is insulating otherwise, where m is an integer [30-

34]. Furthermore, we study the low energy electronic structure. The linear dispersion 

relation is observed in armchair GNRs. Calculation results based on the derived analytical 


