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Abstract

In this thesis, at first we obtain some equivalent conditions for a module over a Prüfer

domain and derive properties of Dedekind modules over such a domain. We then ob-

tain equivalent conditions for a finitely generated Dedekind module over an integrally

closed ring and we characterize multiplication Dedekind modules. Finally, we prove

the lying over and the going down theorems for modules and apply them to prove

some results on the dimension of a module and its submodules.

This thesis has been partially supported by the linear Algebra and Optimization

Center of Excellence of Shahid Bahonar University of Kerman.
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Introduction

Dedekind domains have been studied for many years. Dedekind modules, were first

defined by A.G.Naoum and F.H.Al-Alwan in 1996([5]). They generalized the notion of

Dedekind domain to module theory. Later, M.Alkan, Y.Tiras in 2004 ([4]), M.Alkan,

B.Sarac and Y.Tiras in 2005 ([3]) and B.Sarac, P. F.Smith and Y.Tiras in 2007([21])

generalized some other notions such as the notion of integrally closed modules to

in order to characterize Dedekind modules and obtain some properties of Dedekind

modules that are similar to the properties in ring theory. We aim to characterize

Dedekind modules and submodules of Dedekind modules and D1-modules.

Finally, we shall prove the lying over and going down theorems for modules, and then

prove some results on the dimension of a module and its submodules.
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Throughout this thesis, unless stated otherwise, all rings are commutative with

identity and all modules are unitary. In this chapter, we first introduce the notion of

a prime submodule. Secondly we introduce Dedekind modules and we shall review

some researches into the topics related to Dedekind modules.

1.1 Prime Submodules

Definition 1.1.1. ([9]) An R-module M ∕= 0 is called a simple module if it has no

submodules except 0 and M .

Let R be a ring and let N be a submodule of an R-module M . The set

{r ∈ R ∣ rM ⊆ N}

is denoted by (N : M) and (0 : M) is denoted by AnnR(M).

Definition 1.1.2. ([13]) Let M be an R-module. A submodule Q of M is primary if

for all r ∈ R and m ∈M , rm ∈ Q and m ∕∈ Q imply that rnM ⊆ Q for some positive

integer n.

If Q is a primary submodule of M then
√

(N : M is a prime ideal of R.

Definition 1.1.3. ([14]) A submodule N of an R-module M is called prime if N ∕= M

and given r ∈ R, m ∈M , rm ∈ N implies m ∈ N or r ∈ (N : M).

We note that when R is a noncommutative ring, the statement “rm ∈ N” in the

above definition is replaced by “rRm ⊆ N”. Clearly, every prime submodule of a
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module is primary. Let N be a submodule of M . It is easy to see that N is a prime

submodule of M if and only if p = (N : M) is a prime ideal of R and the R
p

-module

M
N

is torsion-free. We shall call N a p-prime submodule of M . Clearly, an ideal of a

ring R is prime if and only if it is a prime submodule of R as R-module. In contrast

with rings, modules may have no prime submodules. For example, when p is a prime

integer, the Z-module Z(p∞) has no prime submodule.

Let M be an R-module. The set of all prime submodules and maximal submodules

of M are respectively denoted by Spec(M) and Max(M).

Definition 1.1.4. [15] The radical submodule N ofR-moduleM is given by radM(N) =

∩P where the intersection is over all prime submodules of M containing N . If there

is no prime submodule containing N , then we put radM(N) = M .

we denote the intersection of all prime submodules of an R-module M , by radM(0)

and the intersections of all proper maximal submodules by Rad(M). The radicals of

R and an ideal I of R are denoted by N(R) and
√
I respectively.

A ring R is called Von Neumann regular ring if for every a ∈ R there exists an

element b ∈ R such that a = aba.

Corollary 1.1.1. ([14, Corollary page 62]) If M is a module over a Von Neumann

regular ring, then every primary submodule of M is prime.

Proposition 1.1.2. ([17, Proposition 1.2]) Let R be any ring, M and M ′ left R-

modules, and ' ∈ HomR(M,M ′). Let N be a prime submodule of M ′ such that

'(M) ⊈ N . Then '−1(N) is a prime submodule of M .
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Definition 1.1.5. Suppose that M is an R-module and P is a prime ideal of R. Put

SP = R∖P . Define the distinguished submodule PM(SP ) as {x ∈M : sx ∈ PM , for

some s ∈ S} of M .

Note: If PM(SP ) ∕= M then PM(SP ) is a prime submodule of M .

Example 1.1.3. (i) Let M = Z⊕ Z be a Z-module. If P is a prime ideal of Z then

PM(SP ) = P ⊕ P and PM(SP ) is a prime submodule.

(ii) Let M = R be an R-module. If P is a prime ideal of R then PM(SP ) = P .

Definition 1.1.6. ([1]) The dimension of M is the maximal positive integer k, such

that there exist a chain of prime distinguished submodules of M as follows:

N0 ⊂ N1 ⊂ ⋅ ⋅ ⋅ ⊂ Nk

and we set dimM =∞ if there is a chain of the above kind for every value of n.

Definition 1.1.7. ([7] An R-module M is called a multiplication R-module, provided

for every submodule N of M , there exists an ideal I of R such that N = IM .

For example every ring R is a multiplication R-module.

Proposition 1.1.4. ([7, Proposition 3.4]) Let M be a faithful multiplication R-

module. Then M is finitely generated if and only if M ∕= pM for all minimal prime

ideals p of R.

In particular, Proposition 1.1.4 shows that if R is a domain then any faithful

multiplication module is finitely generated.

Notation. Let A = (aij) ∈ Mm×n(R) and F be the free R-module R(n). We shall
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use the notation ⟨A⟩ for the submodule N of F generated by the rows of A, and the

notation (r1, . . . , rm)A, ri ∈ R, for an element of N .

Lemma 1.1.5. ([10, Lemma 1.2]) Let R be a principal ideal domain (PID) and

A ∈Mn(R) , det(A) ∕= 0 and A′ = (a′ij) be the adjoint matrix of A. Then (x1, ..., xn) ∈

⟨A⟩, for some xi ∈ R (1 ≤ i ≤ n) if and only if det(A) ∣
n∑
i=1

xia
′
ij , for every j,

1 ≤ j ≤ n.

Definition 1.1.8. ([10]) Let R be a principal ideal domain (PID) and J = {j1, ..., j�}

be a subset of {1, ..., n} and let p ∈ R be a prime element. A matrix A ∈ Mn(R),

A = (aij), is said to be a p-prime matrix (or simply prime) if A satisfies the following

conditions:

(i) A is upper triangular.

(ii) For all i, 1 ≤ i ≤ n, aii = p if i ∈ J and aii = 1if i ∕∈ J .

(iii) For all i, 1 ≤ i ≤ j ≤ n, aij = 0 except possibly when i ∕∈ J and j ∈ J .

Sometimes we call J the set of integers associated with A and denote it by JA.

By (i) and (ii) it is clear that det(A) = p�.

Example 1.1.6. Let R = Z and J = {2, 4, 6} and let p ∈ Z be a prime element.

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 a12 0 a14 0 a16 0

0 p 0 0 0 0 0

0 0 1 a34 0 a36 0

0 0 0 p 0 0 0

0 0 0 0 1 a56 0

0 0 0 0 0 p 0

0 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Then matrix A is prime matrix and det(A) = p3.

Theorem 1.1.7. ([10, Theorem 2.5]) Every full rank prime submodule of R(n) is the

row space of a prime matrix and vice versa.

Example 1.1.8. ([10]) For every prime element p ∈ Z, the prime submodules N of

Z3 = Z⊕ Z⊕ Z such that (N : Z3) = pZ are as follows:

⟨

⎛⎜⎜⎜⎜⎝
p 0 0

0 1 0

0 0 1

⎞⎟⎟⎟⎟⎠⟩, ⟨
⎛⎜⎜⎜⎜⎝

1 a12 0

0 p 0

0 0 1

⎞⎟⎟⎟⎟⎠⟩, ⟨
⎛⎜⎜⎜⎜⎝

1 0 a13

0 1 a23

0 0 p

⎞⎟⎟⎟⎟⎠⟩, ⟨
⎛⎜⎜⎜⎜⎝

p 0 0

0 p 0

0 0 1

⎞⎟⎟⎟⎟⎠⟩,

⟨

⎛⎜⎜⎜⎜⎝
p 0 0

0 1 a23

0 0 p

⎞⎟⎟⎟⎟⎠⟩, ⟨
⎛⎜⎜⎜⎜⎝

1 a12 a13

0 p 0

0 0 p

⎞⎟⎟⎟⎟⎠⟩, ⟨
⎛⎜⎜⎜⎜⎝

p 0 0

0 p 0

0 0 p

⎞⎟⎟⎟⎟⎠⟩,
where 0 ≤ aij ≤ p− 1, 1 ≤ i < j ≤ 3.
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1.2 Dedekind Domains and Prüfer Domains

Definition 1.2.1. ([13]) Let R be a ring. An element a ∈ R is called a zero-divisor

if there is an element b ∈ R, b ∕= 0, such that ab = 0.

An element of R which is not a zero-divisor is called regular .

Definition 1.2.2. ([13]) Let R be a ring. A subset S ⊆ R, is called a multiplicatively

closed set in R if 0 ∕∈ S, 1 ∈ S and ab ∈ S whenever a ∈ S and b ∈ S.

Example 1.2.1. If p is a prime ideal of R then S = R∖p is a multiplicatively closed

set in R.

Definition 1.2.3. ([13]) Let M be an R-module and S be a multiplicatively closed

set in R. The localisation of M with respect to S is constructed as follows.

Consider the set M × S. Define a relation ∼ on M × S by condition, (x, s) ∼ (y, t)

if and only if s1(tx − sy) = 0, for some s1 ∈ S. It is easy to verify that ∼ is an

equivalence relation on M × S. The set of equivalence classes is denoted by S−1M .

Any element of S−1M being an equivalence class containing (x, s) is denoted by the

symbol (x
s
, x ∈M, s ∈ S. In particular for M = R, the set S−1R is defined.

If p is a proper prime ideal of R and S = R∖p then we denote S−1R by Rp and

called it the quotient ring of R with respect to p.

If S is the set of all regular elements of R, then S is a multiplicatively closed set in

R. The ring S−1R is called the total quotient ring of R.

Definition 1.2.4. ([13]) A valuation ring is an integral domain R with the property

that if I and J are ideals of R then either I ⊆ J or J ⊆ I.
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Example 1.2.2. (i) Any field K is a Valuation ring.

(ii) Let K be a field and

R = {f(x)

g(x)
: f(x), g(x) ∈ K(x), deg f ≤ deg g}.

R is a valuation ring.

Definition 1.2.5. ([13]) A fractional ideal of a ring R is a subset A of the total

quotient ring K of R such that:

(i) A is an R-module;

(ii) There is a regular element d of R such that dA ⊆ R.

For example every ideal of R is a fractional ideal of R.

Definition 1.2.6. ([13]) A nonzero fractional ideal A of a ring R is said to be invert-

ible if A−1A = R, where A−1 = {x ∈ K : xA ⊆ R}.

Definition 1.2.7. ([13]) A domain R is called a Prüfer domain if every nonzero

finitely generated ideal of R is invertible.

For example every principal ideal domain is a Prüfer domain.

The following theorem contains some basic properties of Prüfer domain.

Theorem 1.2.3. ([13, Theorem 6.6]) If R is an integral domain, then the following

statements are equivalent:

(i) R is a Prüfer domain;

(ii) Every nonzero ideal of R generated by two elements is invertible;

(iii) Rp is a valuation ring, for every prime ideal p of R.
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Definition 1.2.8. ([13]) If R is a ring and K is its total quotient ring, then any ring

T such that R ⊆ T ⊆ K is called an overring of R.

We give two characterizations of Prüfer domain in terms of their overrings.

Theorem 1.2.4. ([13, Theorem 6.10]) An integral domain R is a Prüfer domain if

and only if every overring of R is a flat R-module.

Corollary 1.2.5. ([13, Corollary 6.11]) If an integral domain R is a Prüfer domain

then every overring of R is a Prüfer domain.

Theorem 1.2.6. ([13, Theorem 6.13]) An integral domain R is a Prüfer domain if

and only if every overring of R is integrally closed.

Theorem 1.2.7. ([8, Theorem 2.7, page 155]) A finitely generated torsion-free mod-

ule M over a Prüfer domain R is projective, and hence finitely presented. Moreover,

M ∼= I1 ⊕ ...⊕ In,

where I1, ..., In are finitely generated ideals of R.

Proposition 1.2.8. ([9]) Let M be an R- module. The following conditions are

equivalent.

(i) Any non-empty collection of submodules of M has a maximal element.

(ii) For any increasing sequence of submodules of M , M1 ⊂ M2 ⊂ ... ⊂ Mn ⊂ ...,

there exists some integer m such that Mk = Mm for all k ≥ m.

(iii) Every submodule of M is finitely generated.

Definition 1.2.9. ([9]) An R-module M is called Noetherian if it satisfies any one

of the above equivalent conditions.
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Definition 1.2.10. ([9]) A ring R is called a Noetherian ring if the R-module R is a

Noetherian.

Example 1.2.9. (i) Any field R is a Noetherian ring.

(ii) Any finite ring R is Noetherian.

(iii) Any principal ideal ring is Noetherian.

Definition 1.2.11. ([13]) An integral domain R is a Dedekind domain if every proper

ideal of R is a product of prime ideals.

Example 1.2.10. (i)The class of Dedekind domain is precisely the class of Noetherian

Prüfer domains.

(ii) The ring Z[
√

5] = {a + b
√

5∣ a, b ∈ Z} is a Dedekind domain.

There are large number of equivalent conditions for a Noetherian integral domain

to be a Dedekind domain. The equivalence of some of these conditions are stated in

the following theorem.

Theorem 1.2.11. ([13, Theorem 6.20]) If R is a Noetherian integral domain, then

the following statements are equivalent:

(i) R is a Dedekind domain;

(ii) Every nonzero ideal of R generated by two elements is invertible;

(iii) For every maximal ideal P of R, the ring of quotients RP is a valuation ring;

(iv) (A+B) : C = (A : C) + (B : C) for all ideals A, B, C of R;

(v) C : (A ∩B) = (C : A) + (C : B) for all ideals A, B, C of R;

(vi) If P is a maximal ideal of R, then every P -primary ideal of R is a power of P .

(vii) If P is a maximal ideal of R, then the set of P -primary ideals of R is totally

ordered by inclusion.
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1.3 Dedekind Modules

The concept of an invertible submodule was introduced in [5] as a generalization of the

concept of an invertible ideal and several authors have extensively studied invertible

submodules and Dedekind modules.

Following Al-Alwan and Naoum [5]

Proposition 1.3.1. ([5]) Let M be an R-module and let S be the set of non-zero

divisors of R. Then T = {t ∈ S : tm = 0 for some m ∈ M implies m = 0} is a

multiplicative set.

Definition 1.3.1. ([5]) Let T−1R be the localization of R at T in the usual sense

and let N be any submodule of M . If x = r
t
∈ T−1R and n ∈ N , then we say that

xn ∈M if there is a m ∈M such that tm = rn.

Definition 1.3.2. ([5]) A nonzero submodule N of M is invertible if N ′N = M ,

where N ′ = {x ∈ T−1R : xN ⊆M} and M is a Dedekind module provided that M is

nonzero and each nonzero submodule of M is invertible.

Note that N ′ is an R-submodule of the quotient field K.

Furthermore, M is said to be a D1-module if each non-zero cyclic submodule of

M is invertible. It is clear that every Dedekind module is a D1-module; however the

converse is false.

Example 1.3.2. (i) The Prüfer group Zp∞ has no proper invertible submodule.

(ii) Let R be a ring, then R is a D1-module if and only if R is an integral domain.

(iii) Q is a Dedekind Z-module.


