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ABSTRACT

THE COMMUTANT OF MULTIPLICATION BY z ON THE
CLOSURE OF POLYNOMIALS IN Lf(p)

BY:

MEHDI NIKPOUR

In this thesis u represents a positive, compactly supported Borel measure
in the complex plane. For each t in [1,00), the space P*(u) consists of
the functions in Lf(u) that belong to the (norm) closure of the analytic
polynomials in one variable. Multiplication by z on P*(y) is a bounded
operator, which is denoted by S,. Throughout, it is assumed that S, is
irreducible. J. Thomson in [T] has shown that the set of bounded point
evaluations, bpe(P*(p)), is a nonempty simply connected region G having the
following properties: (a) The spectrum of S,, denoted o(S,), equals G; (b)
The essential spectrum of S, denoted 0,(S,), equals G; (c) The commutant
of S,, identified in the coustomary way with P*(u) N L*®(u), is isometrically
isomorphic to the bounded analytic functions on G, denoted by H*(G).
We let ~: f — fsignify this Banach algebra isometric isomorphism from
H>(G) to P'(pu) N L=(u). Let ¢ be a Riemann map from G to where D
where D denotes the open unit disc, it follows that ¢ is in P*(u) N L®(u).

Now, define a measure, v, by setting v = pop 1. A routine argument shows




that S, acting on P*(v) is irreducible with bpe(P!(v)) = D. If ¢ is the inverse
of p, then we also have that ¢ is in PHv) N L*™(v).

In chapter I, a historical review of the theory and some related back-
grounds of it are given. In chapter II, we will investigate the structure of
PY(p), relate the structure of P*(u) to bounded and analytic bounded point
evaluations and provide a result relating the above classes of operators to
cyclic subnormal operators. In chapter III, the measure p restricted to the
boundary of G is absolutely continuous with respect to the harmonic mea-
sure on G and the function ;Z is almost a one-to-one map from a carrier of
v lsp to a carrier of u |sp are proven. In chapter IV, it is proved that the
space P?(u) N C(supp(u)) = A(G) where C(supp(u) denotes the continuous
functions on supp(p) and A(G) denotes those functions continuous on G that

are analytic on G.
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CHAPTER 1

INTRODUCTION




1. INTRODUCTION

1.1. Historical Review of the Theory

Selfadjoint and normal operators were the first classes of Hilbert space
operators to be analyzed. The prototype is multiplication by the coordinate
function z on L*(u), where u is a compactly supported measure on the com-
plex plane. If we take u to be the arc-length measure on the unit circle,
we obtain the shift operator on two-tailed square-summable sequences. The
spectral theorem asserts that any normal operator can be represented as a
direct sum of such multiplication operators on L*-spaces. The theory has
the flavor of measure and integration.

An operator S is defined to be subnormal if it is the restriction of a normal
operator to an invariant subspace. These operators, introduced in 1950 by
P. Halmos, have as prototype the multiplication by z on the closure P?(p)
in L*(u) of the analytic polynomials. In the case of arc-length measure we
obtain multiplication by z on the Hardy space H*(df), which is equivalent to
the shift operator on one-sided square-summable sequences. Now in addition
to measure theory there is a strong taste of function theory. One asks, when
are the polynomials in z dense in L*(u)? If they are not dense, can the defect
be accounted for by the analyticity of functions in P2(,u) on some nonempty

open subset of the plane?




Function theory enters the picture through the functional calculus. Let
K be a compact subset of the complex plane containing the spectrum a(S)
of §. If f is a rational function with poles off K, then f(S) is defined, and
the operator norm of f(S) is dominated by the supremum norm of f over
K. Thus we obtain an algebra homomorphism of the uniform algebra R(K)
into B(X). The later space is a dual space, and if x is a measure on K
with sufficiently ample support, the operator calculus extends to a weak-star
continuous homomorphism from the weak-star closure R*(K, u) of R(K) in
L*®(u) into B(X). For K = ¢(S) and special i, we have even an isometric
weak-star homeomorphism. Information about R*®(K,u) yields information
about S via this functional calculus. The functional calculus also extends to
the bidual R(K)**, which is an inverse limit of the spaces R®(K, u).

The problem of uniform approximation by analytic polynomials was solved
in 1953 by S. N. Mergelyan. The uniform limits on K of polynomials in z
are precisely the functions in C'(K) which extend continuously to be analytic
on the interior of the polynomial hull of K (the union of K and the bounded
components of the complement of K). Mergelyan’s proof was completely
constructive. He used the Cauchy-Green formula to split the singularities
into bite-sized chunks. This localization technique and the Cauchy trans-
form permeate the constructive side of the theory. In 1963 a semiabstract
proof of Mergelyan’s theorem was obtained through the efforts of E. Bishop,
L. Glicksberg, and J. Wermer. Concrete function theory still played an imp-
portant role. The abstract theory kicks in once one knows that P(K) is a

Dirichlet algebra, and this requires an (easier) approximation theorem for

[}




harmonic functions.

The L*-approximation problem remains a difficult nut to crack, with com-
plete results only in very special cases. On the other hand, the weak-star
approximation problem turned out to be more tractable. In 1972, through
a beautiful analysis, D. Sarason obtained a decomposition of P®(y) as a di-
rect sum of L*®(u,) and P*(u,), where the latter summand is isometric and
weak-star homeomorphic to the algebra H*(U) of bounded analytic func-
tions on a certain open set U. Sarason’s proof is constructive in nature. He
constructs an increasing chain of Dirichlet algebras R(K,), indexed by the
ordinals, such that functions in a dense subset of each can be approximated
appropriately by bounded sequences of functions from the predecessors. The
procedure terminates long before the first uncountable ordinal is reached,
and U is the interior of the final (smallest) K,. Sarason’s analysis had a
substantial impact on the study of subnormal operators. The functional cal-
culus that was obtained played a role in S. Brown’s proof in 1978 of the
existence of invariant subspaces for subnormal operators. In turn, this theo-
rem attracted a lot of attention to the theory. In 1981 Conway published a
research monograph in the red Pitman series that described this theory and
culminated in Sarason’s analysis of P*(u) and Brown’s invariant subspace
theorem.

The next natural step was to apply the tools of rational approximation
theory, specifically properties of R®(K, 1), to obtain information on subnor-
mal operators. The problem of uniform approximation by rational functions

had been solved in 1967 by A. G. Vitushkin in terms of analytic capacities.




In 1972, A. M. Davie obtained a striking result, a decomposition of the bidual
R(K)** as a direct sum of an L*°-space and an algebra isometric and weak-
star homeomorphic to R (K, Ag), where Ag is the area measure restricted
to the set @ nonpeak points of R(K). The set @ has full area density at each
of its points, and in some respects it behaves as a finely open set does with
respect to bounded harmonic functions. Intuitively the algebra R®(K,\g)
can be thought of as an algebra of bounded analytic functions on Q. In the
case R(K) is a Dirichlet algebra, Q is just the interior of K.

The next step was taken in 1974 by J. Chaumat, who gave a similar
description of R*®(K,u) for an arbitrary measure u on K. The set playing
the role of Q, denoted by E(u), consists of the points 2 € K for which
the evaluation functional is weak-star continuous on R(K) in the weak-star
topology of L™ of the measure x deprived of its mass at {z}. Again E(u) has
full area density at each of its points, and R (K, u) can be decomposed as a
direct sum of an L* term and an algebra isomorphic to R (K, Ag(,)). In 1985
Cole and Gamelin gave a proof of Chaumat’s theorem along the constructive
lines of Sarason’s proof, producing a chain of intermediate algebras which
are invariant under the T,,-operators used by Vitushkin to split singularities.
(In a weak and uninspired moment someone dubbed these “T-invariant”
algebras.) The theory so unified covers any algebra invariant under the
localization operators.

Recently J. Thomson made a breakthrough on the L? polynomial ap-
proximation problem. He succeeded in answering an old question on the

existence of analytic point evaluations, showing that if P*(u) # L*(u) then




there is a nonempty open set U on which the functions in P?(u) are analytic.
This is a seminal result, which will have substantial spin-off. The basic idea
of the proof was inspired by an earlier proof technique of M. S. Melnikov,

who had shown in 1976 that each Gleason part for R(K) is “area connected”.

1.2. Related Topics from Measure Theory

Suppose f is a mapping from X into Y, ¥ is a o-field in X and S is a
o-field in Y, then we say that f is a measureable transformation from (X, ¥)
into (Y, 8) if f~*(E) € 7 for every E in §. This condition can also be written
Sy c F.

In the case of measurable functions, these are measurable transformations
from (X, F) to (R*, S) in which § is the o-field of Borel sets in R* (extended
real numbers.) Given mappings f: X — Y, g: Y — Z we can consider
the composition g(f) : X — Z defined by g¢(f)(z) = ¢(f(z)). In particular,
if g: Y — R” is an extended real-valued function on Y, then g(f) defines

an extended real function on X.

Lemma 1.2.1. If f : X — Y is a measurable transformation from
(X, 7) into (Y,S) and ¢ : ¥ — R™ is S-measurable as a function with
extended real values, then the composition g(f) is F-measurable.

Proof. For any Borel set B in R™ we have

{z:9(f)(z) e B} = fHy:g9(y) e B}

= f"YE) for some EC S,




and is therefore in 7. O

Remark. We have obtained a special case of this lemma when we want
to prove that a Borel measurable function of a measurable function is mea-
surable.

If we start with a measure space (X, #,u) and f is a measurable trans-
formation from (X, ¥) into (Y, S) it is natural to use f to define a measure

v on § by putting
V(E) :=u(fY(E)) for E€S. (1)

With this definition of v it is immediate that (Y, S, v) is a measure space.
If (1) holds we will write v = pf~!. This allows us to carry out a “change of

variable” in an integral.

Theorem 1.2.2. Suppose f is a measurable transformation from a mea-
sure space (X, ¥,u) to a measurable space (Y,S)and g : YV — R* is §-
measurable then

[ adtus) = [_a(5)dn

in the sense that if either integral exists so does the other and the two are
equal.

Proof. See [Ty, Thm. 6.8]. [

Remark. If, in the notation of Theorem 1.3.2,F is a measurable subset
of Y, then an application of Theorem 1.3.2 to the function x,.y yields the

relation

| gdugt - / gfdp.
e




Sometimes in integration, when the variable is changed, one wants to
integrate with respect to a new measure v # uf~!. We can do this easily

when pf~! is absolutely continuous with respect to v.

Theorem 1.2.3. Given o-finite measure space (X, ¥,u) and (Y, S,v)
and a measurable transformation f from (X, ) into (Y, S) such that uf!

is absolutely continuous with respect to v

[ o(5)du = [ g.4dv,

where ¢ is the Radon-Nikodym derivative ﬂ“Tf‘;l, for every measurable g :

Y — R in the sense that, if either integral exists, so does the other and
the two are equal.

Proof. See [Ty, Thm. 6.9]. O

Remark. It is clear from the above that the function ¢ plays the part
of Jacobian (or rather the absolute value of the Jacobian) in the theory of
transformations of multiple integrals. In general it is not easy to obtain an
explicit value for the Radon-Nikodym derivative ﬂ’—‘gﬁ, but in important

special case this can be done.

1.3. The Support of a Measure

Let X be a topological space and B be the Borel sets of X. The support
of a measure p : B — [0, 400}, if it exists, is a closed set, denote supp(u),
satisfying:

L p((supp(p))) = 0;

2. If G is open and G N supp(p) / ¢, then p(G N supp(p)) > 0.




