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ABSTRACT

SHEAR MODULUS AND DAMPING RATIO OF
MIXED GRAVEL AND CLAY

BY

MAHRASHK MEIDANI

Gravel-Clay mixtures are abundant material in nature and are frequently used in certain
civil engineering projects such as earth dams, levees and landfills. The impervious core of
Karkheh dam, one of largest earthdams in the world, is made of this material. The
advantage of using these soils lies in their low permeability owing to clay fraction and
high shear strength due the non-cohesive granular part. To date, little research has been
carried out to investigate the performance of these soils and therefore, their behavior
under cyclic loading is still not well known. In order to investigate the cyclic behavior of
gravel-clay mixtures, 51 cyclic and monotonic triaxial tests were performed on specimens
with 11 different mixtures and under various confining pressures. Two different types of
gravel, i.e. angular and round grains, were utilized to prepare specimens with the same
gravel content in order to investigate the effect of granule shape on the cyclic behavior of
the mixture. A phenomenon called contact crushing succeeded by granule slippage is
introduced for the angular gravels. The importance of sampling method and specimen

size for intermediate soils is also noticed.

Keywords: Cyclic Loading, Damping Ratio, Earthfill Dam, Granule Shape, Granule
Contact, Gravel-Clay Mixture, Micromechanics, Shear Modulus.
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