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Abstract

The ISM Equation of State Applied to Refrigerants
By

Fatemeh Sabzi Sarvestani

In this work, we apply an equation of state based on
statistical-mechanical perturbation theory to liquid refrigerants and
their mixtures. Three temperature-dependent parameters are needed to
use the equation of state: the second virial coefficient, Bx(T), an
effective van der Waals covolume, b(T), and a scaling factor, a(T).
The second virial coefficients are calculated from a correlation based
on the heat of vaporization, AH,,,, and the liquid density at the
freezing point, pg. a(T) and b(T) can also be calculated from the
second virial coefficient by a scaling rule. Based on the theory, these
two temperature-dependent parameters depend only on the repulsive
branch of the potential function, and therefore, by our procedure, can
be found from AH,,, and pg,. The theory has a considerable predictive
power, since it permits the construction of the p-v-T surface from the
heat of vaporization plus the triple-point density. The equation of state

is tested for pure, two, and three component liquid refrigerant

mixtures.
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The ISM Equation of State Applied

1o Refrigerants

1.1. Introduction

The study of the P-V-T behavior of gases provides a bése from
which many practical and penetrating studies stem. Many equation of
states, dating back to the work of Scottish mathematician and
physicist peter Guthrie Tait over 100 years ago, have been proposed
for practical use [1-3].

The best known example of an equation of state that we can
study is the ideal gas equation of state fluids

PV=nRT (D
where P is pressure, V is volume, n is mole number, R is gas constant,
and T is absolute temperature. The above equation tells us that only
two of the three state functions P, V, and T are independent.

Real gases, or vapours, approximate to ideal gas only if the
volume is so large that the molecules are, on average, a long way apart
from each other. As the gas is compressed this average distance
decreases and the effects of the intermolecular forces become
apparent. The ideal gas equation of state must then be replaced by an
equation, which attemps to allow for these forces.

In 1873, the Dutch chemist J.D. Van der Waals showed that the
addition of two parameters to the ideal gases equation of state could
account for much of the deviation of real gases from ideal behavior

[4]. He attributed the failure of the derived PV=nRT relation to




duplicate the behavior of real gases to the neglect of the volume
occupied by the gas molecules and the attractive forces between the
molecules. The result of van der Waals’ corrections based on these

two factors is ‘
: 2
(P +—5) (V-nb)=nRT )

where a is a constant which is a measure of the strength of the
attractive force between a pair of molecules and b is the excluded

volume. Another form of equation (2) is

P 1 ap

okT ~ 1-bp KT ©)

where, p=n/V is the number density and kT is thermal energy per
molecule.

The result is an equation that acts much better than the ideal gas
equation in describing the P-V-T behavior of real gas. As is well
known, this equation shows a critical point and also condensation,
when combined with the Maxwell equal-area construction.

A number of other two parameter equation have been
developed in attempt over the years to produce modifications of van
der Waals equation having a greater accuracy; a few of the better
known ones are those of Dieterici [5], Beattiec and Bridgeman [6],
Benedict, Webb and Rubin [7] and Redlich and kwong [8]. Such
equations are widely used in engineering applications [9,10].

The status of van der Waals equation plus the Maxwell
construction was considerably enhanced, at least among theoretician,

“when Kac, Uhlenbeck and Hemmer [11-14] showed in what sense it

could be considered an exact result for a model of hard spheres with




weak long-range attractive forces. The main defect is the use of the
term (1-bp)™ to represent the equation of state of non- attracting hard
spheres in three dimensions (the term is exact in one dimension).

The term ap/kT for the attractive contribution is exact for the
médel. This accounts for the great improvement in accuracy for real
fluids that Haar and Shenker [15] obtained by replacing the term (1-
bp)' by a more accurate percus-Yevick formula, and by using the
correct second virial coefficient instead of the van der Waals result of
B,=b-a/kT.

The importance of a hard-sphere model lies in the fact that the
structure of simple dense fluid is dominated by the intermolecular
repulsive forces [16]). The influence of the attractive forces can then
be treated by statistical-mechanical perturbation theory, as can the
softness of the repulsions. This approach is very much in the spirit of
van der Waals, but the results are far superior, as shown by the
pioneering work of Barker and Henderson [17] and of Weeks,
Chandler and Andersen [18]). The subject is now highly developed,
given the intermolecular potential, it is possible to predict the
thermodynamic properties of simple liquids over their stable range of
temperature and density. Unfortunately, considerable numerical
computation is required, the effective hard-sphere diameter that
appears is a function of both temperature and density, and no simple

analytical equation of state is forthcoming,

1.2 Literature Review

Several correlation procedures, usually based on principle of |

corresponding states, exist by which B(T) can be estimated with




reasonable accuracy. The best of these [19,20] require three
constants: the critical temperature (T,), the critical pressure (P.), and
the Pitzer acentric factor (). A universal family of curves indexed by
the acentric factor is formed by plotting BP/RT, vs. T/T.. The value
of the acentric factor is determined from the vapor pressure at the
reduced temperature. Tao and Mason {21} have shown how T, P, and
acentric factor can be used to predict the equation of state for normal
fluids.

A new method is improved in order to obtain the equation of
state of compressed liquids [22] in which we need at least two scaling
constants available from simple measurements at ordinary
temperatures and pressures. These scaling constants are an energy
constant and a volume or density constant.

These parameters would be used to estimate B(T) from
corresponding states correlation. The cohesive energy and cohesive
energy density can be selected as energy constant and energy density
constant, respectively [23-25]. The cohesive energy is defined as “the
enthalpy of evaporation plus the change in enthalpy in expanding from
the vapor pressure to the ideal gas state minus RT”. Boushehri and
Mason [22] has found empirically that the enthalpy of evaporation
itself works just as well as the cohesive eﬁergy in furnishing a
temperature scale for the calculation of B(T). Thus the temperature
scale constant is simply AH,,/R. The cohesive energy density also
furnishes that can be converted to volume scale by choosing the molar
volume of the liquid. Boushehri and Mason [22] for AH,,, and the
‘molar volume used the triple point as a reference point; since the triple

point is a unique point on the liquid-vapor coexistence curve other
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than critical point. By this method a third constant analogous to
acentric factor does not change the final results. A dimensionless plot
of Bp,, as a function of (RT/AHMP)'2 leads to single curve for a wide
variety of nonpolar fluids.

| It remains to find the constant A. For this purpose they used the
same data that was used to find AH,,,- for example, the vapor pressure
and liquid density at the triple point or freezing point. Thus parameter
A can be obtained from correlation plot of G vs. bp. This method for
determining A make the whole procedure self-correcting [22]. If the
correlation produces values of B that are somewhat in error, or if the
input values of AH,,, and p,, are not accurate, the defects will be
largely compensated by the determining of A.

These results show that the equation of state of compressed
liquids can be predicted from knowledge of just two constants, AHy,p
and p,, which can be obtained from meaéurements of the vapor
pressures and saturated liquid densities at two temperatures.

Boushehri  and Keshavarz [26] have tested the present
prediction scheme for compressed liquid mixtures having a variety of
_ structural types. Their survey . fluids can be classified into the
following groups:

Noble gases
Diatomics

Inorganic polyatomics

Simple alkenes

1

2

3

4. Alkanes up to octadecane
5

6. Simple alkynes

7

Simple aromatic hydrocarbones

5




Compressed liquid mixtures of the above groups have been tested at
different temperatures and compositions. The results show that the
density of binary liquid mixtures can be predicted with high accuracy.

Boushehri, Hashemi, and Keshavarzi [27] have showed the first
application of a statistical mechanical analytical equation of state to
multicomponent liquid mixtures. The agreefnent with COSTALD, an
integrated method for estimating densities of non-polar and slightly
polar liquids and liquid mixtures, {28,29] is within 5%.

They have tested the EOS for compressed liquid mixtures,
having a variety of structural types (_e.g. acentric factor). The test
fluids can be classified into the following groups: alkanes up to
octane, diatomics, simple aromatic hydrocarbon derivatives (e.g.
toluene) and CFCs.

There is a method for predicting an analytical equation of state
of liquids from the surface tension which is described in the
conclusion part. .

The purpbse of this work is to present a method for predicting
the equation of state of liquid refrigerants and their mixture from
properties that are readily available at ordinary pressures and
temperatures. In particular, we use the heat of vaporization and the
liquid density at the triple point as two quantities that can correlate
and predict the behavior of the saturated and compressed liquid.
These two quantities, if not directly available, can be obtained with
sufficient accuracy from two measured vapor pressures and liquid
densities. The equation of state is tested for pure, two, and three
componént liquid refrigerant mixtures in the temperature range 173-

673 K, pressure range 10-100 bar.




1.3 The ISM Equation of State (ISM EOS)

Statistical-mechanical theory for the equation of state of fluids
has yielded simple but remarkably accurate results for both spherical
[30j and molecular [31] fluids. The equation of state obtained from
this work implies a new principle of corresponding states that is much
stronger than the traditional principle [32,33]. Itis a strong principle
in that the entire P-V-T surface is reduced to a single curve, rather
than to a whole family of reduced P-V isotherms (the traditional
result). This new way of exhibiting P-V-T data amplifies small
irregularities and trends in experimental results that would be
concealed by the usual representations, and thereby leads to an
improved analytical equation of state.

The minimum information needed to reduce the P-V-T surface
to a single curve is the second virial coefficient as a function of
temperature By(T). From this are obtained two other temperature-
dependent parameters- an effective van der Waals covolume b(T) and
a scaling factor a(T), which is equivalent to the contribution to By(T)
from just the repulsive branch of the intermolecular forces. The
theory then predicts that a suitable combination of P, p, T, By, b, and
a is a function of the single variable bp, where p 'is the (molar)
density. This combination, according to the statistical-mechanical
theory, ought to represent an average pair distribution function at
contact for equivalent hard convex bodies, but real data show definite
deviations from theoretical expectations. These deviations are caused
~ by many-body forces. |
The parameters B,(T), b(T) and o(T) can all be calculated by

integration if the intermolecular potential is accurately known, and a
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