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Abstract

In this thesis we first give some information about stochastic calculus ’
and stochastic differential equations (SDEs). Then we generalize the explicit
Runge-Kutta methods for the numerical solutions c;f stochastic differential
equations which was first introduced by K. Burrage and P.M. Burrage in 1996.
More precisely, we will introduce implicit and semi-implicit 2-stage Runge-
Kutta methods for the numerical solutions of SDEs. Based on the rooted trees
theory it is shown that both methods are of strong order 1 with minimum
principal error.

Also, we generalize the hybrid methods for numerical solution of SDEs. We
use the idea of linear multistep formula (LMF) for SDEs which Wa's introduced
by L. Brugnano, K. Burrage and P.M. Burrage in 2000. The implementation
of the methods, leading to a predictor-corrector approach.

Some numerical results of our methods are presented.
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Chapter 1

Introduction




-

1.1 Overview

The area of ordinary differential equations (ODEs) is rich and well-researched
with plenty of software packages énd tools available for the numerical solution
of such systems. ODEs arise as a description of a model of a physical system
and are solved in order to provide answers to such questions as how the system
is changing or developing, when change might occur, what effect a different
sta,rti'ng point may have on the solution, and so on. Until recently, many mod-
els that have been developed to describe physical phenomena have ignored
stochastic effects because of the difficulty in solution both in terms of the lack
of suitable numerical methods and also the non-availability of sufficiently pow-
erful computers. However, recently there has been much interest in developing
numerical methods for the numerical solution of stochastic differential equa-
tions (SDEs) and this has meant that more realistic models are capable of
being solved. Some areas where SDEs are used in modelling include invest-
ment finance, option pricing, turbulent diffusion, radio-astronomy, population
dynamics (protein kinetics and genetics), experimental psychology, neuronal
activity, Helicopter rotor, satellite orbit stability, biological waste treatment

(hydrology and indoor air quality), seismology, structural mechanics, blood




clotting dynamics, cellular energetics and polymer dynamics. With the in-
crease in computing power, such complex models can now be realised, and this
has contributed to a burst of interest in the numerical solution of stochastic
differentie;l equations.

An ordinary differential equation such as

j == = f(t,y) (1.1)
may be thought of as a degenerate form of a stochastic differential equation,
as yet undefined, in the absence of randomness. It is therefore useful to review
some of its basic properties. We could write (1.1) in the symbolic differential
~ form

dy = F(t,y)dt (1.2)

or more accurately as an integral equation

VO =wo+ [ floy(s)ds (1.3)

where y(t) = y(¢; yo, o) is a solution satisfying the initial condition y(%,) = yo.
Some regularity assumption is usually made on f, such as lipschitz continuity,
to ensure the existence of a unique solution y(¢; yo, o) for each initial condition.

The inclusion of random effects in differential equations leads to two dis-

tinct classes of equations, for which the solution processes have differentiable
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and nondifferentiable sample paths, respectively. They require fundamentally
different methods of analysis. The first and éimpler class arises when an ordi-
nary differential equaiién has random coefficients; a random initial value or is
forced by a fairly regular stochastic process, or when some combination of these
holds. The equations are called random differential equations and are solved
sample path by sample path as ordinary differential equations. The sample
paths of the solution processes are then at least differentiable functioils. As

an example consider the linear random differential equation

i= D=y +oltw) (14)

where the forcing process g is continuous in ¢ for each w. For an initial value

Yo(w) at ¢ = 0, the solution is given by
11
y(t,w) = ef(‘”)t(yo(w) —I~/ e"f(“’)sg(s,w)ds). (1.5)
0

Its sample paths are obviously differentiable functions of ¢.

The second class occurs when the forcing is an irregular stochastic process
such as a Gaussian white noise. The equations are then written symbolically
as stochastic differentials, but are interpreted as integral equations with It
or Stratonovich stochastic integrals. They are called stochastic differential

equations, which we shall abbreviate by SDEs, and in general their solutions
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inherit the nondifferentiability of sample paths from the Wiener processes in
the stochastic integrals. In many applications such equations result from the
incorporation of either internally or externally originating randorp fluctuations
iﬁ the dynamical description of a system. An example of the former is the
molecular bombardment of a speck of dust on a water surface, which results
in Brownian motion. The intensity of this bombardment does not depend on
the state variables, for instance the position and velocity of the speck.
Einstein’s explanation of observed Brownian motion during the first decade
of the last century, attempts were made by Langevin and others to formulate
the dynamics of such motions in terms of differential equations. The resulting

equations were written in the form of

dy(t) = f(t,y(8))dt + g(t, y(¢))&(t)dt (1.6)

with a deterministic or averaged drift term (1.1) perturbed by a noisy, diffusive
term g(t,y(t))é(t), where £(t) is the standard Gaussian random variables for
each t and g(¢,y) a (generally) space-time dependent intensity factor. This

symbolic differential Wés interpreted as an integral equation
y(t,w) = y(to, w) +/ (s,9(s w))ds—{—/ 9(s,y(s,w))é(s,w)ds  (1.7)

for each smaple path. When extrapolated to a limit, the observations of Brow-
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nian motion set;med to suggest that the covariance C'(t) = E(¢(s)é(s + 1)) of
the process £(t) had a constant spectral density, that is with all time frequen-
cies equally weighted in any Fourier transform of C' (t). Such a process became
known as the Gaussian white noise, particular in the engineering literature.
For the special case of (1.7) with f = 0,9 = 1 we see th;,t £(t) should be the
derivative of pure Brownian motion, that is the derivative of a Wiener process

W (t), thus suggesting that we could write (1.7) alternatively as

y(t, w) = y(to, w) + /: F(s,y(s,w))ds + /: o(s,5(s,w))dW (s, ). (L.8)

The problem with this is, as we will see in future, that a Wiener process
W (t) is nowhere differentiable, so strictly speaking the white noise process ¢ (1)
does not exist as a conventional function of ¢, indeed, a flat spectral density
implies that its covariance function c(t) is a constant multiple of the Dirac
delta function §(¢). Thus the second integral in (1.8) cannot be an ordinary
Reimann or Lebesgue integral. Worse still, the continuous sample paths of a
Wiener process are not of bounded variation on any bounded time interval, so
the second integral in (1.8) cannot even be interpreted as a Reimann-Stieltjes

integral for each sample path.




1.2 Numerical Methods for SDEs
Consider the general It6 SDE

dy(t) = f(t,y(t))dt + g(t,y(t))dW (¢), (1.9)

where f is the drift coefficient and g is the diffusion coefficient. Two particular
cases of (1.9) are those in which the noise is multiplicative or additive. (If
g(t,y(t)) depends linearly on y(¢) then the noise term is called multiplicative,
while if g is constant the SDE has additive noise.)

There are two main classes of methods for solving such an equation numer-
ically, namely one-step methods and multistep methods. A one-step method
needs one starting value for commencing the computation and then proceeds
by updating the numerical solution based only on information from the previ-
ous step and intermediate values within a step. On the other hand, multistep
methods require several starting values (which need to be calculated by, for
example, a low order one-step method), as the update values rely on past
information from a number of steps.

The implementation of numerical methods for SDEs requires the sampling
of Wiener increments to approximate the white noise in the SDE, and this is

acheived by computer generation of pseudo-random numbers. For example the
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simplest stochastic numerical approximation is the Euler-Maruyama method

Ynt1 = Yn + hnf(yn) + g(yn)AWﬂ . (1'10)

where hy, = tp11 — t, and AW, = W(t,q) — W(t,) ~ N(0,h,). The noise
increments AW, are N(0, k,)-distributed random variables, and can be gener-
ated numerically by using a pseudo-random number generator. T'wo efficient
ways of generating these increments are by the Box-Muller method or by the
Polar-Marsaglia method, each involves sampling from a Uniform distribution
(over [0,1]), and then applying a transformation with subsequent scaling by
the factor v/h,. The Polar—Marséglia method returns two samples each time it
is used, and is the scheme used in the numerical implementations carried out

in this thesis.




