

پایان نامه کارشناسی ارشد در مهندسی شیمی

^{عنوان:} مدلسازی و شبیه سازی رأکتور رایزر واحد کراکینگ کاتالیستی بستر سیالی

استاد راهنما: دکتر جعفر صادقی

استاد مشاور: **دکتر فرهاد شهرکی**

تحقیق و نگارش: محمد شاهچراغی

این پایان نامه از حمایت مالی معاونت پژوهشی دانشگاه سیستان و بلوچستان بهره مند شده است

189+/11/10

بسهه تعالى

این پایان نامه با عنوان عنوان پایان نامه مدلسازی و شبیه سازی رأکتور رایزر واحد کراکینگ کاتالیستی بستر سیالی قسمتی از برنامه آموزشی دوره کارشناسی ارشد مهندسی شیمی توسط دانشجو محمد شاهچراغی با راهنمایی استاد پایان نامه دکتر جعفر صادقی تهیه شده است. استفاده از مطالب آن به منظور اهداف آموزشی با ذکر مرجع و اطلاع کتبی به حوزه تحصیلات تکمیلی دانشگاه سیستان و بلوچستان مجاز می باشد.

محمد شاهچراغی

این پایان نامه واحد درسی شناخته می شود و در تاریخ توسط هیئت داوران بررسی و درجـه به آن تعلق گرفت.

	نام و نام خانوادگی	امضاء	تاريخ
استاد راهنما:	دکتر جعفر صادقی		
استاد راهنما:			
استاد مشاور:	دکتر فرهاد شهرکی		
داور ۱:	دکتر حسین آتشی		
داور ۲:	دکتر فرشاد فرشچی تبریزی		

نماينده تحصيلات تكميلى: دكتر كيانوش رزاقى

تعهدنامه اصالت اثر

اینجانب محمد شاهچراغی تعهد می کنم که مطالب مندرج در این پایان نامه حاصل کار پژوهشی اینجانب است و به دستاوردهای پژوهشی دیگران که در این نوشته از آن استفاده شده است مطابق مقررات ارجاع گردیده است. این پایان نامه پیش از این برای احراز هیچ مدرک هم سطح یا بالاتر ارائه نشده است.

کلیه حقوق مادی و معنوی این اثر متعلق به دانشگاه سیستان و بلوچستان می باشد.

نام و نام خانوادگی دانشجو: محمد شاهچراغی

امضاء

The University of Sistan & Baluchestan Graduate School

The Dissertation of M.Sc. in chemical engineering

Title:

Modeling and Simulation for Riser Reactor of a Fluidized Bed Catalytic Cracking

Supervisor: **Dr. Jafar Sadeghi**

Advisor: **Dr. Farhad Shahraki**

Research by: Mohammad Shahcheraghi

•1/•۲/۲•۱۲

This dissertation has been enjoyed the financial contribution of University Research department of Sistan and Bluchestan Feb 2012

This thesis entitled "Modeling and simulation for riser reactor of a Fluidized Bed Catalytic Cracking" is a part of educational program for chemical engineering of Post graduated degree program has been prepared by student "Mohammad Shahcheraghi" and under supervision of supervisor assistant professor Dr.Jafar Sadeghi and advisor professor Dr.Farhad Shahraki.

Permission is hereby granted to individual for educational proposes and with mentioning the references and with writhen permission of university of Sistan and Baluchestan post graduated department.

Student's Name and Signature

These theses counts as 6 credit units and Granted grade on the date by evaluation committee.

Supervisor professor: Dr. Jafar Sadeghi

Advisor Professor: Dr.Farhad Shahraki

Arbitrator 1: Dr. Farshad Farshchi tabrizi

Arbitrator 2: Dr. Hossein Atashi

Representative of Post Graduated Program: Dr.razaghi

WORK AUTHENTICITY:

The information and procedures contained in this theses are based upon the research and the personal experiences, except otherwise has been mentioned. Every effort has been made to ensure that all researchers granted by addressing to their work accordingly. This thesis has not been offered for obtaining an equivalence degree or higher degree by any mean.

Permission for using of this research is hereby granted to Sistan and Baluchestan University.

Student Name and Last name: Mohammad Shahcheraghi

Student Signature:

Dedicated to My dear mother

ACKNOWLEDGMENTS:

I am indebted to my dear professors especially **Dr. Jafar sadeghi** and **Dr. Farhad Shahraki** which in addition to contribution during project had provided their assistant. Hope God blesses them.

I am thankful to my dear friend **Ehsan Javadi Shokroo** for his significant role during this career.

ABSTRACT:

A one dimensional dynamic model for a riser reactor in a fluidized bed catalytic cracking unit (FCCU) for gasoil feed has been developed in two distinct conditions, one for industrial FCCU and another for FCCU using various frequencies of microwave energy spaced at the height of the riser reactor (FCCU-MW). In addition, in order to increase the accuracy of component and bulk diffusion, instantaneous and overall fractional yield is used in a heuristic manner. Furthermore, the effect of various catalysts to oil ratio on gasoline yield with FCCU-MW has been studied. The results of the convectional FCCU simulation show great compatibility with the plant data in hand. Comparison of the two models shows that microwave energy gives better results in terms of gasoline yield. Also it has been shown that the increase of catalyst to oil ratio leads to the increase of gas oil conversion and especially gasoline yield.

Keywords: Modeling – Simulation - Fluidized bed catalytic cracking – Microwave energy – riser reactor

The work done in this study is organized into six chapters. **The first chapter** represents introduction of the fluid catalytic cracking unit (FCCU). A literature review on the modeling and simulation of FCCU follows in the **second chapter** which consists of kinetic development, modeling and simulation review and FCC evolution. **Chapter 3** deals with the riser model development. In this section energy balance, partial and overall mass balance equations have been derived. Also, energy balance for a model of a FCCU riser reactor exposed to microwave energy (FCCU-MW) is given. Experimental relationship is used to model the pressure behavior in the riser section of FCCU. Instantaneous and overall fractional yield is used to increase the accuracy of component and bulk diffusion in a heuristic manner. **Chapter 4** represents simulation steps of riser reactor of a FCC and FCC-MW models. Results of the riser simulation results are compared with industrial data and other simulations that have been reported in the literatures. After that results of the models that simulated in the present work are compared. **Chapter 6** summarizes the conclusions drawn from the study. Also a new FCCU using microwave energy is recommended which has been registered as a patent in the Iranian Patent Organization.

CONTENTS

	Page No
CERTIFICATE	i
WORK AUTHENTICITY	ii
ACKNOWLEDGEMENTS	iv
ABSTRACT	v
CHAPTER.1 INTRODUCTION	
1.1 Process description	2
1.2 FCCU feedstock and products	7
1.3 FCCU reactions	8
1.4 FCCU reactor	9
1.5 FCCU regenerator	12
1.6 FCCU catalyst	13
1.6.1 Structure of catalyst	14
1.7 performance improvement of FCCU	17
1.7.1 Effects of microwave energy into catalytic refinery processes	18
1.8 Modeling of FCCU unit	19
1.9 Aim and scope of present work	20

CHAPTER.2 LITERATURE REVIEW

2.1 FCCU kinetic model development literatures	22
2.2 FCCU modeling and simulation literatures	24

2.3 FCCU performance improvement		25
	2.3.1 Evolution of FCCU reviw	26
	2.3.2 FCCU using Microwave review	27
2.4	Present work	28

CHAPTER.3 MATHEMATHICAL MODELING FOR RISER REACTOR OF FLUID

CATALYTIC CRACKING

3.1 Assumptions	30
3.2 partial mass balance	31
3.3 Energy balance	36
3.4 Momentum balance	38
3.5 Total mass balance	38
3.6 Experimental equation for computing pressure drop	39
3.7 Rate of reaction equations	40
3.8 Initial and boundary conditions	41
3.9 Steady-state model:	42

CHAPTER.4 SIMULATION OF FLUID CATALYTIC CRACKING RISER REACTOR

4.1 Converting the equations in dimensionless form	45
4.1.1 Partial mass equation	45
4.1.2 Temperature equation	46
4.1.3 Overall mass equation	46
4.2 Steps of temperature, concentration and velocity equations solving simultaneously	
4.2.1 Substituting equation (4-17) into partial mass equation	48
4.2.2 Substituting equation (4-17) into temperature equation	48
4.3 Solving equations using implicit finite difference method	49

	4.3.1 Generate grids	49
4.4	Replacing grades into equations	50
	4.4.1 Temperature equation	50
	4.4.2 Partial mass equation	51
	4.4.3 Velocity equation	52
4.5 A	4.5 Apply initial and boundary conditions	
	4.5.1 Temperature Boundary conditions	53
	4.5.2 Concentration boundary conditions	53
	4.5.3 Velocity boundary conditions	54
4.6 \$	Solve the system of algebraic equations using matrix inverse	54
4.7	Implement and debug the computer code	54

CHAPTER 5 RESULTS AND DISCUSSIONS

5.1 Data required	57
5.2 Industrial FCCU results	58
5.3 FCC-MW simulation results	63
5.4 Comparison of FCCU and FCCU.MW results	67
5.5 Effect of catalyst to oil ratio (CTO) to increase the gasoline yield	70

CHAPTER 6 CONCLUSION

6.1 Conclusions	
6.2 Recommendation	73
6.2.1 Microwave regenerator	74
6.2.2 New riser-regenerator design	78
6.2.3 New FCCU design	79

6.2.3.1 Process description	79
6.2.3.2 Advantages of the new FCC proposed	83
References	84
APPENDIX-I Description of microwave heating and its applications	
1 Microwave heating	95
1.1 Microwave heating mechanisms	96
1.1.1 Dipolar polarization	96
1.1.2 Ionic conduction	97
1.1.3 Interfacial polarization	97
2 heat transfer equations	98
2.1 Lambert's law approach	99
2.2 Maxwell's equations approach	107
3 Some application of microwave processes	100
3.1 Cracking process by microwave	100
3.1.1 Heavy hydrocarbons including bitumen	100
3.1.2 Microwave oil sands and bitumen cracking	102
3.1.3 Microwave plastic material cracking	102
3.2 Microwave Oil and water emulsion separation	104
3.3 Microwave naphthenic acids elimination	104
3.4 Microwave hydrodesulfurization and hydrodenitrogenization	106

APPENDIX-II High-Severity FCCU

1 High	I-Severity FCCU	109
	1.1 Downer reactor	109
	1.2 HS-FCCU process description	110

LIST OF TABLES

Table 1.1	Feedstock properties of a FCC unit	8
Table 1.2	typical FCC unit products	9
Table 1.3	regenerator reactions	12
Table 2.1	The evolution of FCC	26
Table 5.1	Kinetic constants, activation energies and heats of reaction	57
Table 5.2	Industrial riser dimension and thermodynamic properties	57
Table 5.3	Physical properties of reactive species and catalyst	57
Table 5.4	Dielectric constants	58
Table 5.5	Comparison of presented FCCU simulation results with plant data and simulation	n
	results reported by Ali and Rohani	58
Table.6.1	example of microwave regenerator effect	78
Table A.I.1	some materials dielectric property	104
Table A.I.2	Product yield due to microwave cracking	111

LIST OF FIGURES

Fig 1.1	Block flow diagram of typical refinery	4
Fig1.2	Overall schematic of a FCC unit	5
Fig.1.3	Detailed schematic of a FCC unit	6
Fig 1.4	Modes of fluidization	10

Fig 1.5	Typical FCC riser reactor	11
Fig 1.6	Evolution in structure of FCC catalysts before 1990	14
Fig 1.7	Component of FCC catalysts	15
Fig 1.8	Effect of zeolite/matrix ratio on delta.coke	16
Fig 1.9	Effect of ZSM.5 zeolite on octane number of gasoline	17
Fig 2.1	3.lump kinetic model scheme	22
Fig 2.2	4.lump kinetic model scheme	22
Fig 2.3	5.lump kinetic model scheme	23
Fig 2.4	Another 5.lump kinetic model scheme	23
Fig 3.1	schematic of volume control of the fluid flow	30
Fig 3.2	4.lump kinetic scheme	41
Fig 4.1	The implicit method stencil	50
Fig 4.2	simulation flowchart	55
Fig 5.1	simulated profiles along the riser reactor	59
Fig 5.2	temperature profile along the riser	60
Fig 5.3	dynamic simulated profile	61
Fig 5.4	dynamic temperature profile	61
Fig 5.5	3D view of Gas oil conversion	62
Fig 5.6	3D view of Gasoline yield	62
Fig 5.7	3D view of Light gases yield	62
Fig 5.8	3D view of Coke yield	63
Fig 5.9	3D view of temperature profile	63
Fig 5.10	simulated profiles along the riser reactor (FCC.MW)	64
Fig 5.11	FCC.MW temperature profile	64
Fig 5.12	Dynamic component profile in FCC.MW riser reactor	65
Fig 5.13	Temperature profile in FCCU.MW riser reactor	65

Fig 5.14	3D view of the gas oil conversion in terms of height and time	66
Fig 5.15	3D view of temperature profile in FCC.MW	66
Fig 5.16	3D view of the Gasoline yield in FCC.MW	66
Fig 5.17	3D view of Light gases yield in FCC.MW	67
Fig 5.18	3D view of coke yield in FCC.MW	67
Fig 5.19	comparison of temperature profile between FCCU and FCCU.MW models	68
Fig 5.20	comparison of gas oil conversion profile between FCCU and FCCU.MW models	s 68
Fig 5.21	comparison of gasoline yield profile between FCCU and FCCU.MW model	69
Fig 5.22	comparison of light gases yield profile between FCCU and FCCU.MW models	70
Fig 5.23	comparison of coke yield profile between FCCU and FCCU.MW models	70
Fig 5.24	the effect of changing the catalyst.to.oil ratio on the gasoline yield in FCCU	71
Fig 5.25	the effect of changing the catalyst.to.oil ratio on the gasoline yield in FCCU.MW	71
Fig.6.1	microwave regenerator proposed	82
Fig 6.2	Riser and regenerator in industrial FCC unit	86
Fig 6.3	new riser-regenerator using microwave technology	87
Fig 6.4	FCCU applied new riser-regenerator design	88
Fig A.I.1	Schematic of microwave plastic material cracking reactor	111
FigA.I.2	a simple naphthenic acid in oil/water emulsion	113
Fig A.II.1	HS-FCC process scheme	118

NOMENCLATURE

a, b	Dimensions of the waveguide (m)
Co	Velocity of light in vacuum (m.s ^{.1})
C_{d}	Drag coefficient
Cp _{cat}	Heat capacity of catalyst $(kj.kg^{.1}.k^{.1})$
Cp _{ds}	Heat capacity of dispersion steam (kj.kg ^{.1} .k ^{.1})
Cp_i	Heat capacity of ith component (kj.kg ^{.1} .k ^{.1})
Cp_{go}^{l}, Cp_{go}^{v}	Heat capacity of gas oil in liquid and vapor phase, respectively $(kj.kg^{.1}.k^{.1})$
Cp_{mix}	Heat capacity of gas.solid mixture $(kj.kg^{.1}.k^{.1})$
СТО	Catalyst to oil ratio $(kg_{cat}.kg_{oil}^{.1})$
d_i	Specific gravity of hydrocarbon
$\mathbf{D}_{\mathrm{i},\mathrm{m}}$	Diffusivity of ith component into mixture (m.s ⁻²)
$\mathbf{D}_{\mathrm{i},\mathrm{j}}$	Diffusivity of ith component into jth component (m.s ^{.2})
D _{mix}	Diffusivity of mixture (m.s ^{.2})
d _p	Depth of adsorption (m)
E	Activation energy
f	Frequency of electromagnetic radiation (Hz)
F_0	Microwave power flux at the surface (W. m ²)
F _{cat}	Catalyst mass flow (kg.s ^{.1})
F _{ds}	Dispersed steam mass flow (kg.s ^{.1})
F_{go}^{1},F_{go}^{v}	Gas oil mass flow in liquid and vapor phase, respectively (kg.s ^{.1})
Fr	Froude number
Fr _t	Froude number on terminal velocity
$f(KT/\epsilon_{ij})$	Collision function
g	Gravity (m.s ⁻²)
Gs	Solid mass flux (kg.m ⁻² .s ⁻¹)
ΔH_{i}	Heat of reaction for ith component (kj.kg ^{.1})

$\Delta H_{go}^{\ \ vap}$	Heat of vaporization for gas oil component (kj.kg ^{.1})
K _i	Thermal conductivity of ith component $(w.m^{.1}.k^{.1})$
K _{mix}	Thermal conductivity of mixture (w.m ^{.1} .k ^{.1})
k ₁ , k ₂ , k ₃ , k ₄ , k ₅	Reaction rate constants (m^{6} kmol ^{.1} kg _{cat} ^{.1} s ^{.1})
l	Length of gas in eqn. 10 (m)
М	Molecular weight of mixture (mol.kg ^{.1})
M_{i}	Molecular weight of ith component (mol.kg ^{.1})
N_i	ith Component mass flux (kg.m ^{.2} .s ^{.1})
Р	Total pressure (Pa)
Q	Volumetric heat generation term in eqn. 8 (W.m ^{.3})
Q'''	Volumetric heat received to gas.solid mixture in eqn. 1 (W.m ^{.3})
R	Universal gas constant (j.mol ⁻¹ .k ⁻¹)
r _i	Rate of reaction for ith component $(m^6 kmol^{.1} kg_{cat}^{.1} s^{.1})$
$\mathbf{r}_{i,j}$	Molecular separation at collision (nm)
Т	Temperature (k)
T _{cat}	Catalyst temperature at riser entrance (k)
t	Time (s)
tc	Residence time of catalyst (s)
T _{ds}	Dispersed steam temperature at riser entrance (k)
T_{vap}	Vapor phase temperature at riser entrance (k)
T_{go}	Gas oil temperature at riser entrance (k)
u	Velocity (m.s ^{.1})
u _p	Particle velocity (m.s ^{.1})
uo	Riser superficial velocity (m.s ^{.1})
y _i	ith Component mole fraction
Z	axial coordinate (m)

Greek Letters

α	Decay coefficient of catalyst
ε΄	Dielectric constant
ε΄΄	Dielectric loss factor
E _{bed}	Bed porosity
ζ(i/j)	Overall fractional yield
ξ(i/j)	Instantaneous fractional yield
μ_{g}	Gas viscosity (Pa.s ^{.1})
ρ_{cat}	Catalyst density (kg.m ^{.3})
ρ_s	Dispersed steam density (kg.m ^{.3})
ρ_{mix}	Mixture density (kg.m ^{.3})
υ	Slip factor
β	Momentum transfer coefficient
γ	Volume fractions
Subscripts	
bed	Bed
cat	Catalyst
ck	Coke
ds	Dispersed steam
gl	Gasoline
go	Gas oil
mix	Mixture
lg	Light gas
р	Particle
<i>a</i>	Solid

Superscripts

1	Liquid phase
v	Vapor phase

vap Vaporization