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Abstract 
 
 

NUMERICAL MODELING OF WAVE FLUME USING 
SMOOTHED PARTICLE HYDRODYNAMICS 

 
 

By: 
 

ALI MAHDAVI 
 
 
 
The present research is mainly aimed at developing a numerical wave flume based on 
smoothed particle hydrodynamics (SPH), a mesh-free particle method. Accordingly, the 
two-dimensional inviscid Navier–Stokes (Euler) equations are solved in the Lagrangian 
framework. This numerical tool resembles a prismatic flume of rectangular cross section. 
In addition to non-breaking wave run-up, the model enables a detailed description of pre- 
and post-breaking stages of wave motion. The wave flume is equipped with the Scott 
Russell’s wave generator—a falling mass that produces solitary waves while sinking in 
the water body. It is demonstrated how the wave generator is represented as a collection 
of “pseudo-fluid particles”. Careful attention has been paid to properly include solid walls 
as well as inflow boundaries. The former allows continuous flow field near the walls 
while the latter extends the SPH versatility beyond the limit of confined flows.  

It is well known that the SPH suffers from the computational costs, making it 
practically unsuitable for domains of large spatial extent. In contrast, the Eulerian 
methods relying on depth-averaged conservation laws appear to be computationally 
efficient when discretized over large areas. Therefore, a hybrid model is attempted that 
combines the SPH with an Eulerian solver for the Boussinesq equations in a one-way 
coupling framework. Finally, a computational mapping technique is proposed for a two-
way Eulerian-Lagrangian coupling in the context of nonlinear shallow water equations. 
The performance of proposed schemes is thoroughly assessed by comparing with relevant 
analytical solutions, experimental data and numerical results found in the published 
literature.  

 
Keywords: SPH, water wave modeling, Eulerian-Lagrangian coupling, solid boundary 
treatment, inflow boundary, fluid-rigid body interaction 
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 INTRODUCTION 
 

Accurate prediction of nearshore waves and their interaction with coastal 
structures has attracted considerable attention in the coastal engineering 
community over the last several decades. As such, several complex phenomena 
are to be correctly understood to draw a detailed picture of nearshore 
hydrodynamics. These include, but not limited to, wave 
propagation/transformation, interaction among incident and reflected waves, wave 
overtopping, wave impact forces on maritime structures and run-up motion.  The 
latter phenomenon is frequently observed by everybody who stands near the 
border of a large body of water. The run-up motion, apart from its important role 
in the nearshore hydrodynamics, also exhibits aesthetic aspects, attracting talented 
poets who do not actually know how to express waves mathematically!   

As a long wave approaches nearshore zones, its wavelength and energy 
undergo a continuous compaction leading to build up in the wave amplitude. 
Concurrently, the nonlinear effects develop steepening waves, propagating bores 
or even breaking waves. The latter is a complex process that can be identified in 
the form of spilling, surging, collapsing, or plunging breaking (Sorensen, 2006).  

The mathematical models governing the wave motion have been extensively 
studied since the development of applied mathematics. Earlier analytical wave 
models severely suffered from restrictive assumptions and/or over-simplified 
geometries (e.g., Carrier and Greenspan, 1958; Tuck and Hwang, 1972). It is 
obvious that such models fail to handle realistic scenarios encountered in a wave 
environment. Nevertheless, they can still serve as benchmarks which are 
appreciable to assess the validity of more complicated numerical schemes. Most 
of the analytical wave run-up models, however, require additional mathematical 
efforts due to improper integrals involving Bessel functions. Consequently, the 
evaluation of solution for a given problem has to be accomplished numerically 
(e.g., Synolakis, 1986, 1987; Li and Raichlen, 2001).  

A wave flume is recognized as a laboratory apparatus designed for the physical 
modeling of different water wave phenomena. This offers valuable insights 
regarding characteristics of waves and helps understanding, on a sound physical 
background, how these affect coastal structures, offshore structures, sediment 
transport and other relevant features.  

Alternatively, the wave evolution process can be well addressed by a numerical 
wave flume. The accuracy of numerical predictions depends on the assumptions 
made in developing the mathematical model as well as the numerical scheme 
implemented for the problem. The major advantages of the numerical wave 
models, which represent approximate solutions to the governing equations, rely on 
the fact that they are less demanding compared to physical counterparts. 
Moreover, most of the restrictive assumptions adhered to analytical models can be 
relaxed with numerical schemes. Numerical wave models may be regarded as 
flexible tools to investigate wave evolution under different circumstances, 
assisting in the understanding and even the detection of previously unknown 
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phenomena. This versatility of application is motivated by the fact that any 
desired change in the geometrical configurations or on the wave conditions can be 
imposed by simply redefining the model input data. Besides, resorting to 
numerical simulation can significantly reduce the amount of time required by 
experimental methods to evaluate a large number of design alternatives, without 
suffering from the scale dependency inherent in physical modeling.  The 
abovementioned features clearly highlight the role of numerical studies as a 
complementary to the physical modeling, particularly when it is difficult to record 
a flow variable experimentally.  

Owing to the recent improvements and developments in the field of numerical 
methods, computational fluid dynamics (CFD) increasingly manifests itself as a 
powerful tool to handle coastal engineering problems. They provide a reliable tool 
to study the wave motion. Formally, a set of partial differential equations in time 
and space are to be numerically treated with pressure and velocity components 
being the main state variables. The calculation of flow field at every time is 
accompanied by properly defined initial and boundary conditions which guarantee 
a unique solution for the problem. Accordingly, the spatial domain is broken up 
into a set of computational cells, either structured or unstructured, and time is 
represented in the discrete form by a finite number of steps. The proportion of 
spatial and temporal increments is often related to the stability of numerical 
scheme under consideration. Different numerical techniques can be adopted to 
convert continuous governing equations into discretized counterparts. 
Conventional numerical schemes, such as the finite difference method (FDM), the 
finite volume method (FVM) and the finite element method (FEM), typically 
embody fixed cells through which the fluid is flowing. The FDM approximates 
the governing equations on a rectangular grid with truncated expressions from the 
Taylor series expansion. The method is historically accepted in different branches 
of engineering and science, thanks to the ease of implementation and accuracy it 
could offer. However, the FDM requires a quite regular mesh, often rectangular in 
shape; therefore large deformations in the flow can not be handled properly. 
Attempts have been recently made to accommodate FDM with irregular-shaped 
domains via reconstructing the formulation on generalized curvilinear 
coordinates, rather than traditional Cartesian one. The FVM, probably being the 
most popular technique in CFD, represents the spatial domain via a number of 
finite volumes over which the conservation principles are integrated.  The Gauss- 
Green theorem then transforms the volume integration into a surface one; thereby 
the rate of change of a certain quantity inside a control volume is linked to the 
fluxes passing through the boundaries. Similarly, the FEM domain is subdivided 
into a set of elements which share flow data at nodal points. The associated 
formulation may be established on the variational basis, by minimizing a properly 
defined error function. The method appears to be very robust in dealing with 
domains confined by irregular boundaries.   

Despite their apparent advantages, the traditional grid-based schemes suffer 
from inherent drawbacks in many features, with the tendency to restrict the model 
performance in a variety of situations. One such difficulty is encountered in the 
case of highly complex free surface flows characterized by large deformation and 
fragmentation. Supplementary techniques are often required to delineate the free 
surface as it moves rapidly with time.  
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Under such circumstances, the smoothed particle hydrodynamics (SPH), as a 
mesh-free, Lagrangian method, can be preferred to the commonly-used CFD 
techniques. The efficiency of the SPH has been confirmed even in simulating 
broken and multi-connected free surface configurations.  The SPH principles are 
founded on finite number of moving interpolation points that can be regarded as 
particles, each carrying the physical properties of flow. The information gathered 
from this set of Lagrangian particles fully defines the state of system at discrete 
level.  The equations of motion can be extracted from the Navier–Stokes 
equations by adopting a kernel interpolation method which converts the integral 
equations into summations over nearby particles. The partial differential equations 
are thus simplified to ordinary differential equations that can be integrated in time 
to evaluate the properties of each particle.  

 
 

1-1 Objectives  
 

This thesis mainly focuses on developing a numerical wave flume based on 
smoothed particle hydrodynamics, a mesh-free particle method. Accordingly, the 
two-dimensional Euler equations are dealt with in the Lagrangian framework, 
reproducing a prismatic flume of rectangular cross section.  In addition to non-
breaking wave run-up, the model enables a detailed description of pre- and post-
breaking stages of wave motion. The wave flume is equipped with the Scott 
Russell’s wave generator—a falling mass that produces solitary waves while 
sinking in the water body.  

It can be concluded from the published literature that the SPH is highly 
demanding with regard to computational cost, making it practically unsuitable for 
domains of large spatial extent. On the contrary, the Eulerian methods relying on 
depth-averaged conservation laws (e.g., nonlinear shallow water equations and 
Boussinesq equations) appear to be computationally efficient when discretized 
over large areas. Therefore, a hybrid model will be attempted that simultaneously 
incorporates the SPH and an Eulerian solver for the Boussinesq equations in a 
one-way coupling framework. Finally, a computational mapping technique will be 
proposed for a two-way Eulerian-Lagrangian coupling in the context of nonlinear 
shallow water equations.   

The performance of proposed schemes will be thoroughly assessed by 
comparing with relevant analytical solutions, experimental data and numerical 
results found in the published literature.  

 
 

1-2 Novelties 
  
Although widespread attention has been given to SPH technique in recent years, 
there are still important drawbacks because the method is comparatively new in 
the field of free-surface flows. Therefore the aim of present study is to develop 
numerical techniques for free-surface flows interacting with rigid structures. 
Listed below are the new aspects of the numerical methods developed in this 
study: 
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• Solid wall modeling: A hybrid technique is proposed for solid 
boundary treatment within SPH context to ensure accurate computation of 
wave impact pressures on the wall. The basic concept is to fill an 
impervious region with some layers of dummy particles for improving the 
solution accuracy and a single layer of repulsive particles for imposing no-
penetration condition along the solid–fluid interface.  
• Inflow boundary condition: The application of SPH is often limited 

to flows occurring in a confined flume with a free surface and the system 
is completely isolated from the surroundings by solid walls. Introducing 
inflow conditions in the wave flume can broaden its versatility to handle 
open-channel flows, as well. It is accomplished by developing a particle 
injection algorithm to mimic the desired inlet boundaries. It will be shown, 
through numerical tests, that the proposed algorithm works equally well 
for both the steady and unsteady inflows. The latter may be thought of as 
an alternative way for generating solitary waves at the SPH inlet. Besides 
its simplicity, the algorithm can potentially extend the application of SPH 
for the cases where the flow is driven by arbitrary velocity profiles at the 
boundaries. 
• Fluid-solid interaction (Rigid body motion): A Scott Russell’s 

wave generator is also modeled in the wave flume. Just like the fluid 
continuum, this type of moving boundary is represented by a set of 
particles, referred to as “pseudo-fluid particles”. Their positions obey the 
rigid body dynamics in a fully coupled framework with fluid pressure 
forces acting as external excitations for the object. The computation of 
density and pressure for a pseudo-fluid particle follows the same rule as 
that of a real fluid particle —by satisfying the equation of state and mass 
conservation law. The proposed algorithm allows treating the actual rigid 
body as hollow shape represented by few layers of pseudo-fluid particles, 
the mass of which is being introduced as an input data, rather than 
computed by summing up the contribution from individual particles. This 
decreases the computational cost by reducing the number of particles to be 
involved in the simulation.  
• The two-step discretization scheme for the Boussinesq equations: 

The present algorithm comprises a predictor-corrector discretization 
scheme for the Boussinesq equations which implicitly calculates both the 
free surface elevation and the flow velocity. However, given the 
nonlinearity of the governing equations, the procedure requires a small 
number of iterations per time step.   
• The one-way coupling algorithm: The algorithm proposed herein 

utilizes an embedded domain, where a 1D finite difference Boussinesq 
method solves the flow field over large areas. This Eulerian sub-model is 
then coupled to a 2D Lagrangian SPH method which can potentially 
delineate local flow features in regions of interest. The modeler therefore 
enjoys the speed of the Eulerian solver as well as the detailed flow features 
inherent in the SPH method. The Eulerian solver is first applied over the 
entire computational domain. The flow data are extracted from the 
Boussinesq solver and then submitted to the SPH. The data transformation 


