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Abstract

Dual-Code Thin Layer, Parabolized Navier-Stokes Soiutions for Supersonic
Flows Over Spinning Wing-Body Configurations

By

Omid Abouali

In this study, an earlier developed Parabolized Navier-Stokes (}’NS) code
is combined with Thin Layer Navier-Stokes (TLNS) code to solvé supersonic
flows around the non-spinning and spinning wing-body combinations. The
purpose of this dual-code strategy is to decrease the required memeory and
computer time for solving 3-D supersonic flow over complicated geometries. The
process of the matching between two codes is done by a linearized interpolation
subprogram. The flow field around the nose is solved by TLNS code and for the
remainder of the body, before wing’s juncture, PNS code is applied. The modeling
is switched from PNS to TLNS in the vicinity of wing.

Explicit time marching technique with finite volume approach is used to
implement the code. The three dimensional Thin Layer Navier-Stokes (TLNS)
algorithm is based on Roe upwinding scheme for the discretization of inviscid
fluxes and central differencing for viscous terms. The code can be employed in
laminar and turbulent flow as well, in which the Baldwin-Lomax turbulent model
is used. To compute the flowfield around spinning wing-bodies, the capability of
solving the equations in both inertial and rotating frame of references is included
in the code.

To validate the code firstly, laminar hypersonic flow with Mach number
7.95 around a cone at incidence angles of 20° and 2;1° are compared with
experimental data. Then, the results of turbulent flow around a tangent-ogive with

incidence angle of 6° and a secant-ogive with incidence angle of 10° at Mach
v




number 3 are compared with existing experimental data and Buler sofution. The
obtained results were acceptable.

Numerical results of dual-code strategy are presented in two sections. At
the first section, this strategy is applied for non-spinning and spinning bodies. The

numerical results of a supersonic flow over secant-ogive at Mach number 3 are

. compared with the experimental data and full TLNS results. It is found that the

dual-code computer time is one order of magnitude less than that of TLNS code at
comparable accuracy; thus, provides a useful tool in preliminary design of
spinning bodies. Furthermore, it is shown that the final results are not much
sensitive to the stream wise position of the matching plane.

At the second part, the dual-code procedure is applied for wing-body
combinations. Two types of Wing-bodies with sweepback and rectangular wings
are considered. The comparison of the dual-code results with experimental data
and full TLNS results shows that the matching plane should be located small
distance before the wing juncture, especially for the sweptback wings. The
pressure distribution on the body and wing surface for sweptback wing and normal
force coefficient for rectangular wing are compared with the experimental data,
which showed a reasonable accuracy. Finally, the dual-code strategy is used for a
rotating wing-body combination v&:ith rectangular wings. The results show that the

matching process works quite well.
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M
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9x >y, 9z

Q
P

P.
Pr
R
Re
R

Nomenclature

Speed of sound
Coefficient of pressure
Normal force coefficient
Diameter

Total energy
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Coriolis force
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