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Abstract

Hydraulic Algorithm of Inclined Side Weirs In Non-Prismatic Channels

By:

Tooraj Honar

Spatially varied flow has a nonuniform discharge resulting from the
addition or diminution of water along the course of flow. The hydraulic behavior
of a spatially varied flow is more complicated than that of a flow of constant
discharge. In this study, the special type of gradually varied flow considered as
decreasing discharge in the direction of the channel, is discussed. An example of
this type is flow over side weir or flow over side-channel spillway.

This study first presents an overview of the literature on side weirs in both
theoretical and experimental aspects. The literature review indicates that little
attention was made on flow in non-prismatic channel and inclined side weirs.
Therefore, the objective of this research is to investigate the effect of inclined
side weir crest on overall discharge coefficient and elementary discharge
coefficient along the inclined side weir in non-prismatic rectangular channel.

To investigate the effect of inclined side weir crest on discharge
coefficient, an experimental study was carried out in a rectangular channel, 15 m

long, 0.35 m wide and 0.45 m deep with a broad crested rectangular side weir.

In this study, three series of experiments were conducted, one in prismatic

channel and two in non-prismatic rectangular channel. Also in all experiments
downstream gate was used to control water depth on the vicinity of side weir.
The gate was set in three positions, one open-end and two semi-closed-end. Wide

range of variables were used and seven hundred tests were made.




The evaluation of thirty-two non-dimensional variables showed that the
discharge coefficient is correlated to:

* The ratio of upstream and downstream bed width (b,/b;), side weir
upstream Froude number (F);), water depth over upstream of side
weir crest to side weir length ratio ((Y1 —P,)/ L) and water depth
over downstream side weir crest to side weir width ratio
((¥, = B)/W ) for open-end condition.

Upstream to downstream bed width (b,/b,), water depth over side
weir crest to channel water depth in upstream of side weir
((YI - A )/ Y,) and side weir crest slope related to channel bed (y) for

semi closed-end experiments.
Upstream to downstream bed width (b,/b;), side weir upstream
Froude number (F,;), upstream side weir height to channel water

depth on side weir upstream (P,/Y;) and water depth over upstream

side weir crest to side weir length ratio ((YI—PI)/L) for all

condition without considering prismatic factor and downstream
control.

Finally, a model based on statistical analysis was proposed. The model can
predict the discharge coefficient of side weir and in particular inclined broad
crested side weir. The model was also verified by experimental data of this study
and previous published data. The results showed that the absolute residual error
for overall discharge coefficient model was less than 7% and for elementary
discharge coefficient model was less than 6.1% for side weir discharge

prediction.
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Introduction




1. Introduction

Side weirs have been used extensively for water level control in irrigation and
drainage canal systems, as a means of diverting excess water into relief channels for
flood protection works, and as storm overflows from urban sewage systems. A
complete analytical solution of the equations governing the flow in side weir
channels is not possible, and until quite recently, approximate methods have been
used, based on experiments conducted over a limited range of the many variables
involved. In many cases, the use of such approximate methods has involved

substantial errors in the calculated spill discharge.

The flow over side weir in a rectangular channel has been the subject of many

investigations (Engels 1920, Coleman and Smith 1923; Tyler et al. 1929;
Forchheimer 1930; Frazer 1954; Allen 1957; Collinge 1957; Kumar and Pathak
1987, Ranga Raju et al. 1979). Probably the first theoretical approach to the
hydraulics of flow over a side weir in a rectangular channel was reported by De
Marchi (1934). Theoretical and experimental studies for a side weir in a circular
channel reported in the literature include Uyumaz (1982), Uyumaz and Muslu
(1985). Their experimental works and theoretical analyses have been confined to the
flow over side weir in rectangular and circular channels. Only one study pertinent to
side weir exists for U-shaped channels (Hager et al. 1983).

Methods of analyzing spatially varied flow in a channel with a side weir have
been developed to give accurate computations for certain cases. These cases include
subcritical and supercritical flow in the upstream channel and along the weir (De
Marchi 1934; El-Khashab 1975; El-Khashab, and Smith 1976).




