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ABSTRACT

RINGS WHOSE CYCLICS ARE ESSENTIALLY
EMBEDDABLE IN
PROJECTIVE MODULES
BY

M. AHMADY

For the first time Nakayama introduced QF-ring. In 1967 Carl.Faith
and Elbert A. quker showed that R is QF-ring if and only if each
injective right R-module is projective if and only if each injective left
R-modules is projective.

In 1987 S.K.Jain and S.R.Lopez-Permouth proved that every ring
homomorphic images of R has the property that each cyclic S-module
is essentialy embeddable in direct summand of S if and only if Ris a
direct sum of right uniserial rings if and only if R is a semiperfect ring

whose cyclics are essentially embeddable in a direct summand of R.
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CHAPTER 1
INTRODUCTION

Throughout our dissertation, unless stated otherwise, all modules
are unital.

As usual mod-R (R-mod) denotes the category of right(left) R-modules.

1.1 Categories

Definition 1.1.1 A category is a class C of objects (denoted by A, B, c,...)

together with (i) a class of disjoint sets, denoted by hom (A, B), one for
each pair of objects in C; (an element f of hom (4, B) is called a mor-
phism from A to B and is denoted by f : A — B) such that (ii) for each
triple (4, B, C) of objects of C a function hom (B, C)x hom (A, B) —
hom(A,C) (for morphisms f : A — B,g : B —s C this function is
written by (9,f) — go fand gof : A — C is called the com-
posite of f and g); all subject to the axioms: (1) Associativity: If
f:A— B,g:B-— C,h:C — D are morphisms of C, then
ho(gof)=(hog)of.

(2) Identity: for each object B of C there exists a morphism 15 :
B—»Bsuchthatfora.nyf:A—»B,g:B-—»C,lgofzfand

golp=g.

1.2 Indecomposable module

Definition 1.2.1. A non-zero module M is indecomposable if o and
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M are its only direct summands.

A pair of idempotents e; and e; in a ring R are said to be orthogonal
if e;e3 = 0 = eze;.
An idempotent e € R is called a primitive idempotent in case e # 0 and

for every pair e, e; of orthogonal idempotents
e=e; + e; implies e; =0 or e; =0.

If e = ¢? € R, then e and 1 — e are orthogonal idempotents such that

1=e+(1—e¢).

Proposition 1.2.1. Let M be a non-zero module. Then the following
are equivalent:

(a) M is indecomposable.

(b) 0 and 1 are the only idempotents in End(M).

(c) 1 is a primitive idempotent in End(M).
Proof. See (1, 5.10].

Proposition 1.2.2. Let e be a non-zero idempotent endemorphism of
a left module M. Then the direct summand Me of M is indecomposable

if and only if e is a primitive idempotent in End(M).
Proof. See [1, 5.11].

Proposition 1.2.3. Let e € R be a non-zero idempotent. Then the
following statements are equivalent:

(a) € is a primitive idempotent;

(b) Re is a primitive left ideal of R;

(c) eR is a primitive right ideal of R;




(d) Re is an idecomposable direct summand of gR;
(e) eR is an indecomposable direct summand of Rp;

(f) The ring eRe has exactly one non-zero idempotent, namely e.

Proof. See (1, 7.4].

1.3 Free Modules

Definition 1.2.2. A subset X of a left R-module M is said to be
linearly indepenedent provided for distinct Zi,...,Zn € X and r; €
R,rizy + ¢+ + roz, = 0 implies that r; = 0 for every 1. If M is
generatored as an R-module by a set Y then we say that Y spans
M. If R has an identity and M is unitary, then Y spans M if and
only if every element of M can be written as a linear combination
ryr+raye + -+ raya(ri € R,y; € Y). A linearly independent subset
of M that spans M is called a basis of M.

Theorem 1.2.4. Let R be aring with identity, the following conditions
on a unitary left R-module F are equivalent:

(i) F has a nonempty basis.

(ii) F is the internal direct sum of a family of cyclic modules, each
of which is isomorphic as left R-module to R.

(iii) F is R-module isomorphic to a direct sum of copies of the left
R-module R.

(iv) There exists a nonempty set X and function 1 : X — F with
the following property:

Given any unitary R-module M and function F : X — M, there is a




unique R-module homomorphism f : F — M such that fi = f. In

other words, F is a free object in the category of unitary R-modules.
Proof. See [8, iv.2.1].

Definition 1.2.3. A unitary module F over a ring R with identity
which satisfies the equivalent conditions of the above theorem, is called

a free R-module.

1.4 Projective and injective modules

Definition 1.2.4. Let R be a ring. A right R-module P is called

projective if given any diagram of R-module homomorphisms

P
lh
AL B — o
with A and B are right R-modules and the bottom row is exact (that is

g is an epimorphism), there exists an R-module homomorphism f:P —

A such that the diagram

f/ Lh
A 4 B — o

is commutative (that is gf = h).

Proposition 1.2.5. Every free right module F over a ring R with




identity is projective.
Proof. See 8, 3.2].

Theorem 1.2.6. Let R be a ring. The following conditions on a right
iR-module P are equivalent:

(1) P is projective.

(2) If P is a factor module of any module M , then P is a direct
factor of M.

(3) P is direct summand of a free module.
Proof. See (8, 3.4].

Definition 1.2.5. A right R-module E is called injective, if given any
diagram of R-module homomorphism
E
f1
0 — A — B

)
which A and B are right R-modules and the top row is exact (that

is g is a monomorphism), there exists an R-module homomorphism

h : B — E such that the diagram
E

AN
0 — A — B

9

is commutative (that is hg = f).
Proposition 1.2.7. A direct product of R-modules IierJ; is injective
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Dually, a submodule K of M is superfluous (or small) in M, abbre-
viated K << M, in case for every submodule L < M, K+ L =M
implies L = M.

A monomorphism f : K — M is said to be essential in case Imf <

M. An epimorphism g : M — N is superfluous in case kerg << M.

Theorem 1.6.1 Let M be a module with submoduless K < N < M
and H < M. Then

(1) KAMif Kd Nand N dM;

(2 HENKAMiff HId M and K < M.

Proof. (1) LEt K 4 M and suppose 0 # L < M, then LN K # 0.
In particular this is true if L < N, so K I N. But also K < N so
LN N #0 whence N 94 M.

Conversely, if K< Nand NdM and L < M,then LNK =0
implies LN N = 0 implies L = 0.

(2) one implication follows at once from (1). For the other, suppose
H<AdMand KdM with LNnHNK =0, then LN H = 0; because
K < M. whence L = 0 because H I M.

Theorem 1.6.2. Let M be a module with submodules K < N < M
and H < M. Then

(1)N<<MiffK<<Mand%<<%;

(2) H+ K<< M iff H << M and K << M.

Proof. See (1, 5.17).

Theorem 1.6.3. Suppose that K; < M; < M, K, < M; < M, and
M = M1 & Mz; then




if and only if J; is injective for every 1 € I.
Proof. See (8, IV.3.7].

Proposition 1.2.8. Every unitary module A over a ring R with iden-

tity may be embedded in an injective R-mddule.

Proof. See[8, 3.12].

1.5 Idempotents

Definition 1.2.5. Let R be a ring. An element e € R is an idempotent
in case e? = e. A ring always has at least two idempotents, namely 0
and 1. An idempotent e of R is a central idempotent in case it is in the

center of R.

Definition 1.2.8. Let I be an ideal in a ring R and let ¢ + I be an
idempotent element of . We say that this idempotent can be lifted (to
e) modulo I in case there is an idempotent e € R such that g+ = e+ 1.
We say that idempotents lift modulo I in case every idempotent in %
can be lifted to an idempotent in R.

A finite orthogonal set of idempotents e;,...,e, in a ring R is said

to be complete in case ¢; +:--+e, =1€ R.

1.6 Module

Definition 1.2.7. A submodule K of M is essential (or large) in M,
abbreviated K < M, in case for every submodule L < M, KNL =0

implies L = 0.




Dually, a submodule K of M is superfluous (or small) in M, abbre-
viated K << M, in case for every submodule L < M, K+ L =M
implies L = M.

A monomorphism f : K — M is sai& to be essential in case Imf J

M. An epimorphism ¢ : M — N is superfluous in case kerg << M.

Theorem 1.6.1 Let M be a module with submodules K < N < M
and H < M. Then

(1) KA Miff KN and N 4 M;

(2 HNKAMiff Hd M and K 4 M.

Proof. (1) LEt K Q4 M and suppose 0 # L < M, then LN K # 0.
In particular this is true if L < N, so K < N. But also K < N so
LN N # 0 whence N 4 M.

Conversely, if K< Nand NI M and L < M, then LNK =0
implies LN N = 0 implies L = 0.

(2) one implication follows at once from (1). For the other, suppose
H<AMand KA M with LNHNK =0, then LN H = 0; because
K < M. whence L = 0 because H I M.

Theorem 1.6.2. Let M be a module with submodules K < N < M
and H < M. Then
(1) N<< M iff K << M and § << ¥;

(2)H+K<<Miﬂ’H<<MandK<<M.
Proof. See (1, 5.17].

Theorem 1.6.3. Suppose that K; < M; < M, K, < M; < M, and
M = M]_ @ Mg; then




(1) Ki® K, << M; ® M; iff K, << M; and K; << Mjy;
(2) K1®K2ﬂ M1®M2 lflele and KzﬂMg.

Proof. See [1, 5.20].

Definition 1.2.9. A nonzero module H is uniform in case each of its

non-zero submodules is essential in H.

Definition 1.2.10. Let (T,)sca be an indexed set of simple submod-
ules of M. If M is the direct sum of this set, then M = ®,T, is a
semisimple decomposition of M. A module M is said to be semisimple
in case it has a semisimple decomposition. Clearly every simplé module

is semisimple.

Definition 1.2.11. The ring R is called left semisimple when the left

R-module R is semisimple. Similarly we define a right semisimple ring.

Theorem 1.2.12. For a left R-module the following statements are
equivalent:
(a) M is semisimple;

b) M is generated by simple modules;

(
(¢) M is the sum of some set of simple submodules;
(d) M is the sum of its simple submodules;

(

e) Every submodule of M is a direct summand.
Proof. See [1,9.6].

Definition 1.2.12. A commutative ring is a local ring in case it has a




unique maximal ideal.

Definition 1.3.1. A ring R is left(right) self-injective in case pR(Rp)

is injective.

Definition 1.3.2. An injective hull (or injective envelope) ffor a mod-

ule A is any injective module which is an essential extension of A.

Theorem 1.3.2. In the category of left R-modules over a ring R:
(1) M is injective if and only if M = E(M);
(2) If M < N, then E(M) = E(N);
(3) If M < @, with Q injective, ‘the‘n Q=E(M)oE,
(4) If ®4E(M,) is injective (for instance, if A is finite) then

E(QAM,,) = @AE(M.,).

Proof. See [1, 18.12].

1.3 Composition series

Definition 1.3.1. Let M be a non-zero module. A finite chain of
n + 1 submodules of M M = My, > My > -+ > M, = 0 is called
a composition series of length n for M provided that Mj'fl is simple
(¢t =1,2,...,n); t.e, provided that each term in the chain is maximal
in its predecessor.

Let M be an arbitary module and let L < M. Then whether or not

L is a term in a composition series for M, if L has a maximal submodule




