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Abstract: 

Switching-Mode power amplifiers have become one of the most attractive 

amplification techniques due to its low dependency and sensitivity to disturbances and 

tolerances of the element values. This dissertation addresses the modeling and analysis of 

the class-E power amplifier by taking into account the linear and nonlinear characteristics 

of the switching device along with the duty ratio. Moreover, the performance modifications 

are done to obtain high-power conversation efficiency and output power capability at high-

operating frequencies. A novel sub-nominal operation of the class-E power amplifier with 

a shunt inductor is introduced to obtain the maximum output power capability and 

operating frequency. The sub-nominal condition means that only the zero-current 

switching condition (ZCS) is achieved, though the nominal conditions mean that both the 

ZCS and zero-current derivative switching (ZCDS) are satisfied. The design values for 

achieving the sub-nominal condition are expressed as a function of the phase shift between 

the input and output voltages. The class-E amplifier with sub-nominal condition increases 

one design degree of freedom compared with that with the nominal conditions. Because of 

the increase in the design degree of freedom, one more relationship can be specified as a 

design specification. Therefore, it is possible to specify an additional condition such as 

output power, power conversion efficiency, total harmonic distortion (THD), peak switch 

voltage, and peak switch current instead of the ZCDS condition. In the sub-nominal 

operation with any duty ratio, both the peak switch voltage and the peak switch current can 

be set as design specifications due to two more degrees of design freedom in comparison 

with the class-E nominal amplifier at the fixed duty ratio. Additionally, it is also seen that 

the duty ratio affects the maximum operating frequency and the output power capability 

with ZCS condition. 

In the class-E power amplifier with a shunt capacitance, the linear and nonlinear 

parasitic capacitance of the switching device is considered for modeling of the class-E 

power amplifier to satisfy the class-E ZVS and ZVDS conditions. In this case, the duty 

ratio is used not only as the design specification, but also as the adjustment parameter for 

achieving a certain condition. The optimization of the drain efficiency for lower supply 

voltages can be achieved by the reduction of the peak switch voltage. It is done by taking 

into account the duty ratio as a design specification and properly choosing the value of dc-

supply voltage. The maximum operating frequency, output power capability, and element 

values as functions of the duty ratio are obtained. The element values are directly 
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dependent upon the selection of duty ratio and require a careful duty ratio selection to 

minimize component power losses and to maximize the total efficiency. 

The external shunt capacitance is used in the parallel form with the switching device 

to consider the output power as design specification for the class-E shunt capacitance 

power amplifier with the MOSFET linear and nonlinear parasitic capacitances. The class-E 

power amplifier characteristics are obtained as functions of the ratio of the sum of the 

external shunt capacitance and the MOSFET gate-to-drain capacitance to the MOSFET 

drain-to-source junction capacitance at vs=0. The design procedure by taking into account 

the load-resistance or output power as design specification is described. Although, the 

effect of the MOSFET linear gate-to-drain capacitance is similar to that of the external 

linear shunt capacitance on the design of the class-E power amplifier with the square-input 

voltage, the difference between their effects should be considered for the sinusoidal-input 

voltage. Additionally, analytical expressions of output power capability and power 

conversion efficiency are given, which are considerable affected by the external linear 

shunt capacitance. 

The analytical expressions for waveforms and design relationships are derived for the 

class-E power amplifier with the MOSFET nonlinear drain-to-source parasitic capacitance 

at the sub-nominal operation, i.e., only zero voltage switching (ZVS) condition, for any 

grading coefficient m of the MOSFET body junction diode and 50% duty ratio. Only the 

MOSFET nonlinear drain-to-source parasitic capacitance is used in the analysis of the 

class-E ZVS power amplifier, which its nonlinearity is determined by the grading 

coefficient m. The grading coefficient m is used as an adjustment parameter to satisfy the 

given output power and peak switch voltage simultaneously. Additionally, the output 

power capability and maximum operating frequency are affected by the grading coefficient 

m. The validity of the analytical expressions in this dissertation is verified with a 

simulation by circuit simulator and measurement results for all proposed power amplifiers. 

The measurement and simulation results agreed with the analytical expressions 

quantitatively, which show the validity of our analytical expressions. 

Contributions of this dissertation have been published in four JCR-indexed journal 

papers (IEEE-Transactions). 
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1-1-Motivation and Objectives: 

The field of switch-mode power amplifiers has been one of the most active areas in 

research and development of power electronics in the last decades. One of the most 

important switch-mode power amplifiers is the class-E power amplifier, which is an 

efficient and important solution to achieve high-efficiency and high operating frequency 

performances in a lot of various applications, such as the radio-transmitter, dc–dc power 

converters, oscillator, electronic fluorescent lamp ballast, frequency multiplier, induction 

heating, and an RF power transmitter of the implanted system. Therefore, the research and 

development of the class-E power amplifier families has been a very interesting area in 

recent years. 

One of the most extended operation types of the class-E power amplifiers with a shunt 

inductance is the sub-nominal operation, i.e., only zero-current switching (ZCS) condition 

that the degree of the design freedom is increased by one. Nevertheless, there are certain 

aspects with regard to these operation conditions that have not been studied in the technical 

literature on the matter that should be investigated in order to take the advantages of their 

actual potential. This research provides an in-depth analysis of uncovered issues regarding 

the sub-nominal and duty ratio for the class-E power amplifier with a shunt inductor. 

Most of the researches devoted to the class-E power amplifier with a shunt 

capacitance that has been carried out in the nominal operation, which is introduced as zero-

voltage switching (ZVS) and zero-voltage derivative switching (ZVDS) conditions. 

However, their observations and achievements cannot be applied to the design of the class-

E power amplifier with arbitrary design specifications such as peak switch voltage, peak 


