

In the Name of

God the

compassionate the

merciful

Faculty of Engineering Department of Electrical Engineering

Ph.D. Thesis

Title of the Thesis:

Modeling and Nonlinear Analysis of Class-E Power Amplifier with Performance Modification

Supervisor:

Dr. Mohsen Hayati

By: Ali Lotfi

Nov 2013

Acknowledgments

This thesis would not have been possible without help and support from others. My first and sincere appreciation goes to Dr. Mohsen Hayati, my senior supervisor for all I have learned from him and for his continuous help and support in all stages of this thesis. I would also like to thank him for being an open person to ideas, and for encouraging and helping me to shape my interest and ideas. His constant encouragement, support, and invaluable suggestions made this thesis successful.

I would like to thank my committee members Professor. Abdol Ali Abdipour, Dr. Arash Ahmadi, and Dr. Gholam Reza Karimi for their interest in my work. I would like to acknowledge them for reviewing my thesis and providing valuable feedback. I am very grateful to Dr. Hiroo Sekiya of Chiba University and Professor Marian K. Kazimierczuk of Wright State University for their help and valuable advice.

I would like to acknowledge the Department of Electrical Engineering at RAZI University. I am deeply and forever indebted to my parents for their love, support and encouragement throughout my entire life. I am also very grateful to my sisters, and to my brothers.

Abstract:

Switching-Mode power amplifiers have become one of the most attractive amplification techniques due to its low dependency and sensitivity to disturbances and tolerances of the element values. This dissertation addresses the modeling and analysis of the class-E power amplifier by taking into account the linear and nonlinear characteristics of the switching device along with the duty ratio. Moreover, the performance modifications are done to obtain high-power conversation efficiency and output power capability at highoperating frequencies. A novel sub-nominal operation of the class-E power amplifier with a shunt inductor is introduced to obtain the maximum output power capability and operating frequency. The sub-nominal condition means that only the zero-current switching condition (ZCS) is achieved, though the nominal conditions mean that both the ZCS and zero-current derivative switching (ZCDS) are satisfied. The design values for achieving the sub-nominal condition are expressed as a function of the phase shift between the input and output voltages. The class-E amplifier with sub-nominal condition increases one design degree of freedom compared with that with the nominal conditions. Because of the increase in the design degree of freedom, one more relationship can be specified as a design specification. Therefore, it is possible to specify an additional condition such as output power, power conversion efficiency, total harmonic distortion (THD), peak switch voltage, and peak switch current instead of the ZCDS condition. In the sub-nominal operation with any duty ratio, both the peak switch voltage and the peak switch current can be set as design specifications due to two more degrees of design freedom in comparison with the class-E nominal amplifier at the fixed duty ratio. Additionally, it is also seen that the duty ratio affects the maximum operating frequency and the output power capability with ZCS condition.

In the class-E power amplifier with a shunt capacitance, the linear and nonlinear parasitic capacitance of the switching device is considered for modeling of the class-E power amplifier to satisfy the class-E ZVS and ZVDS conditions. In this case, the duty ratio is used not only as the design specification, but also as the adjustment parameter for achieving a certain condition. The optimization of the drain efficiency for lower supply voltages can be achieved by the reduction of the peak switch voltage. It is done by taking into account the duty ratio as a design specification and properly choosing the value of dc-supply voltage. The maximum operating frequency, output power capability, and element values as functions of the duty ratio are obtained. The element values are directly

dependent upon the selection of duty ratio and require a careful duty ratio selection to minimize component power losses and to maximize the total efficiency.

The external shunt capacitance is used in the parallel form with the switching device to consider the output power as design specification for the class-E shunt capacitance power amplifier with the MOSFET linear and nonlinear parasitic capacitances. The class-E power amplifier characteristics are obtained as functions of the ratio of the sum of the external shunt capacitance and the MOSFET gate-to-drain capacitance to the MOSFET drain-to-source junction capacitance at v_s =0. The design procedure by taking into account the load-resistance or output power as design specification is described. Although, the effect of the MOSFET linear gate-to-drain capacitance is similar to that of the external linear shunt capacitance on the design of the class-E power amplifier with the square-input voltage, the difference between their effects should be considered for the sinusoidal-input voltage. Additionally, analytical expressions of output power capability and power conversion efficiency are given, which are considerable affected by the external linear shunt capacitance.

The analytical expressions for waveforms and design relationships are derived for the class-E power amplifier with the MOSFET nonlinear drain-to-source parasitic capacitance at the sub-nominal operation, i.e., only zero voltage switching (ZVS) condition, for any grading coefficient m of the MOSFET body junction diode and 50% duty ratio. Only the MOSFET nonlinear drain-to-source parasitic capacitance is used in the analysis of the class-E ZVS power amplifier, which its nonlinearity is determined by the grading coefficient m. The grading coefficient m is used as an adjustment parameter to satisfy the given output power and peak switch voltage simultaneously. Additionally, the output power capability and maximum operating frequency are affected by the grading coefficient m. The validity of the analytical expressions in this dissertation is verified with a simulation by circuit simulator and measurement results for all proposed power amplifiers. The measurement and simulation results agreed with the analytical expressions quantitatively, which show the validity of our analytical expressions.

Contributions of this dissertation have been published in four JCR-indexed journal papers (IEEE-Transactions).

Table of Contents

Chapter 1: Introduction	1
1-1- Motivation and Objectives	2
1-2- Background and Review of Previous Research	3
1-3- Operating Classes of Power Amplifiers	6
1-4- Class-E Operation Family	14
1-5- Class-F Operation Mode	20
1-6- Thesis Outline	25
Chanter 2: Class-E Power Amplifier Family	27
2-1- Introduction	28
2-2- Class-E Configurations and Conditions	20
2-2-1- Class-E with a Shunt Canacitance Topology	30
2-2-7 Class-E with a Shunt Inductor Topology	36
2.2.2 Class-E Power Amplifier Analysis Methodologies	39
2.3-1. Assumptions and Circuit Descriptions	41
2-3-2 Analytical Methods	11 12
2 2 3 Numerical Methods	τJ 11
2-5-5- Numerical Methods	+4 15
2-4- Other Class-E Fower Amplifier Mathadalagy	+J 16
2.4.2 Analysis of Class DE Amplifier Methodology	+0 17
2-4-2- Analysis of Class-E _M amplifier Methodology	+/ 40
2-5- Conclusions	1 9
Chapter 3: Class-E Power Amplifier With a Shunt Inductor For The Sub- Nominal Operation 3-1- Introduction.	50 51
3-2- Class-E Shunt Inductor Power Amplifier Conditions	51
3-3- Sub-nominal Operation	54
3-3-1- Circuit Descriptions	54
3-3-2- Switch Current and Voltage Waveforms	57
3-3-3- Design Equations	55
3-4- Perturbation Analysis	57
3-4-1- Output Power Capability	57
3-4-2- Power Conversation Efficiency	71
3-5-Simulation and the Circuit Implementation Results and	
Discussions	73
3-5-1- Design Specifications	73
3-5-2- Design Procedure	73
3-5-3- Experimental Results	78
3-6- Conclusions	33
Chapter 4: Performance Study Of The Class-E Power Amplifier With A Shunt Inductor For The Sub-Nominal Operation At Any Duty Ratio	84
4 2 The Class E 7CS condition with Duty Datio	33 25
4-2- The Class-E ZCS condition with Duty Katlo	33 97
4-2-1- Ulicult Descriptions	3/
4-2-2- Circuit Design for Sub-Nominal Condition at Any Duty	

Ratio	91
4-3- Fourier Analysis 1	04
4-4- Power Conversion Analysis	06
4-4-1- Output Power Canability	06
4-4-2- Power Losses with Duty ratio	10
4-5- Circuit Implementation Results and Discussions	14
4.5.1 Design Specifications	11
4-5-1- Design Specifications	14
4-5-2 Enfect of the Duty Ratio of Design Flocedure	14
4-3-3- Experimental Results with Duty fatio	10
4-6- Conclusions	19
Charles 5. Class F. Dames Asser l'Cas With MOSFET Dames'd's	
Chapter 5: Class-E Power Amphiller with MOSFET Parasitic	20
Capacitances	20
5-1- Introduction.	21
5-2- Class-E ZVS and ZVDS conditions	21
5-3- Modeling of the Power MOSFET	23
5-3-1-Switching Pattern	23
5-3-2- Intrinsic Capacitance 1	24
5-3-3-Drive Input Voltage 1	25
5-4- Effect of the Duty Ratio 1	27
5-4-1- Circuit Waveforms Equations	27
5-4-2- Power Relations	30
5-4-3- Element Values	34
5-5- Switching Stresses	37
5-5-1- Peak Switch Voltage 1	37
5-5-2- Peak switch Current	38
5-5-3- Output Power Capability	39
5-6- Maximum Operating Frequency	40
5-7- Power Conversion Efficiency	42
5-7-1- Equivalent Series Resistance	1/2
5.7.2 Power Dissinations	172
5.9. Simulated and Massured Desults	42
5.9.1 Design Presedure for Fixed and Varied Duty Datio	44
5-6-1- Design Procedure for Fixed and Varied Duty Ratio	43
5-8-2- Comparing of Results	40
5-9- Conclusions	51
Chapter 6: Class-E Power Amplifier With MOSFET Parasitic	
Capacitances And An External Shunt Capacitance	52
6-1- Introduction.	53
6-2- Class-E with a Shunt Capacitance 1	54
6-2-1- MOSFET Non-Linear Intrinsic Capacitance 1	56
6-2-2- Parasitic and External Shunt Capacitances 1	57
6-3- Circuit Analysis with Linear and Nonlinear Capacitances 1	60
6-3-1- Switch Voltage and Current	60
6-3-2- Discussions and Comparisons for MOSFETs	65
6-3-3-Voltage across Resonant-Circuit Reactance and Design	
Equations 1	70
6-4- Switch Characteristics	77
6-4-1- Peak Switch Voltage and Current	72
6-4-2- Output Power Canability	75
0 ± 2 Output to wor Capatility	15

6-4-3- Maximum Operating Frequency	176
6-5- Power Dissipations Analysis.	177
6-6- Circuit Implementation	180
6-6-1- Design Specifications	180
6-6-2- Design Procedure for the Specified Output Power	180
6-6-3- Output Power Gain and THD.	184
6-6-4- Results and Discussions	185
6-7- Conclusions	190
Chapter 7: Class-E ZVS Power Amplifier With MOSFET Nonlinear	
Capacitance For Any Grading Coefficient <i>m</i>	191
7-1- Introduction	192
7-2- Class-E Sub-nominal Operation	192
7-2-1- Nominal and Optimal Operation	193
7-2-2- Sub-nominal Condition	193
7-3- Circuit Analysis with Nonlinear Shunt Capacitance	196
7-3-1- Circuit Description and MOSFET Modeling	196
7-3-2- Basic Waveforms at Sub-Nominal Operation	198
7-3-3- Design Equations	204
7-4- Effect of Grading Coefficient on Switch Characteristics	206
7-4-1- Peak Switch Voltage and Current	206
7-4-2- Output Power Capability	209
7-4-3- Perturbation Analysis	210
7-5- Circuit Implementation	212
7-5-1- Design Procedure with Grading Coefficient	212
7-5-2- Switching Element Selection	213
7-5-3- Experimental results and discussions	216
7-6- Conclusions	222
Chapter 8: Conclusions and Future Works	223
8-1- Conclusions	224
8-2- Future Works	226
8-3- Publications	227
References	229

List of Figures

Contents
Figure 1-1- The Basic circuit topology of power amplifier
Figure 1-2- General circuit diagram of class-A, class-AB, class-B and class-C power amplifiers
Figure 1-3- (a) The class-A drain voltage (dash-line) and current (solid-line) waveforms. (b) The load-line
Figure 1-4- (a) The class-AB drain voltage (dash-line) and current (solid-line) waveforms. (b) The load-line
Figure 1-5- (a) The class-B drain voltage (dash-line) and current (solid-line) waveforms. (b) The load-line
Figure 1-6- (a) The class-C drain voltage (dash-line) and current (solid-line) waveforms. (b) The load line
Figure 1-7- The class-D power amplifier (voltage-mode). (a) Idealized circuit topology. (b) Switch drain voltage and current waveforms
Figure 1-8- The class-D ⁻¹ power amplifier (current-mode). (a) Idealized circuit topology. (b) Switch drain voltage and current waveforms
Figure 1-9- The Class-E power amplifier with a shunt capacitance. (a) Basic circuit topology. (b) Switch voltage and current waveforms for the ideal operation
Figure 1-10- The Class-E power amplifier with a shunt inductor. (a) Basic circuit topology. (b) Switch voltage and current waveforms for the ideal operation
Figure 1-11- Circuit topology of class-DE power amplifier
Figure 1-12- Nominal waveforms for class-DE power amplifier at the duty ratio 0.25.
Figure 1-13- The class-E _M power amplifier circuit pology
Figure 1-14- Nominal waveforms of the class-E _M power amplifier for the duty ratio 0.5
Figure 1-15- (a) Class-F power amplifier circuit topology. (b) Inverse class-F power amplifier circuit topology
Figure 1-16- Nominal switch voltage and current waveforms. (a) Class-F power amplifier. (b) Inverse class-F power amplifier
Figure 1-17- Circuit topology of class-E/F _{odd} power amplifier Figure 1-18- Switch-voltage and current waveforms of an ideal class-E/F _{odd}
power amplifier.
Figure 2-1- The class-E power amplifier. (a) Basic circuit topology. (b) Idealized equivalent circuit.
Figure 2-2- The basic class-E shunt capacitance power amplifier waveforms. (a) Switch voltage. (b) Output voltage. (c) Switch current. (d) Output current
Figure 2-3- The basic circuit of the class-E shunt inductor power amplifier

Figure 2-4- Steady-state waveforms for the nominal operation. (a) Shunt inductor voltage (b) Switch voltage (c) Switch current (d) Output current 38
Figure 3-1- (a) Basic circuit of the class-E shunt inductor power amplifier [12].
(b) Idealized equivalent circuit used in this analysis [12]
Figure 3-2- Normalized slope of switch current as a function of φ
Figure 3-3- $V_{DD}/I_{DD}R$ as a function of φ
Figure 3-4- V_m/V_{DD} as a function of φ
Figure 3-5- $R/\omega L$ as a function of φ
Figure 3-6- Typical normalized switch voltage waveforms, for $\varphi > \varphi_{nominal}$,
$\varphi = \varphi_{\text{nominal}}$ and $\varphi < \varphi_{\text{nominal}}$, Nominal condition, i.e., ZDCS is obtained
at $\varphi = \varphi_{\text{nominal}}$. For $\varphi > \varphi_{\text{nominal}}$ and $\varphi < \varphi_{\text{nominal}}$, the switch voltage
begins from the positive and negative values, respectively
$\varphi = \varphi_{\text{nominal}}$ and $\varphi < \varphi_{\text{nominal}}$, Nominal condition, i.e., ZDCS is obtained
at $\varphi = \varphi_{\text{nominal}}$. For $\varphi > \varphi_{\text{nominal}}$, the switch current rises up to zero.
For $\varphi < \varphi_{nominal}$, the switch current falls down to zero when the switch
turns off φ
Figure 3-8- The peak of normalized shunt inductor current $i_{I peak} R/V_{DD}$ as a
function of a 65
Figure 3-9- $1/\omega C_V R$ as a function of ω .
Figure 3-10 Normalized peak switch current $I_{SV}R/V_{DD}$ as a function of σ
Figure 3-11- Normalized peak switch voltage as a function of φ 69
Figure 3-12- Output power capability c_{α} as a function of a_{α}
Figure 3-13. The equivalent circuit of the class-E shunt inductor power amplifier
including ESRs
Figure 3-14- Waveforms obtained from the theoretical expressions, PSpice
Simulation, and experiments for the sub-nominal operation
Figure 3-15- Comparison of the simulated and measured values of output power as a function of the load resistance for the sub-nominal condition
Circuit design example
figure 5-16- Comparison of the simulated and measured values of efficiency as a function of the load resistance for the sub-nominal condition circuit
Figure 4-1- The class-E power amplifier with a shunt inductor (a) Circuit
topology [12]. (b) Idealized equivalent circuit [12]
Figure 4-2- φ as a function of the normalized derivative of the switch
current α for fixed values of the duty ratio D
Figure 4-3- Normalized peak switch voltage V_{SM}/V_{DD} . (a) as a function of α for
fixed values of the duty ratio D . (b) as a function of the duty ratio D
for fixed values of α
Figure 4-4- Typical Normalized switch voltage for $\alpha > 0$, $\alpha = 0$ and $\alpha < 0$, the

normalized peak switch voltage increases as α decreases	9
Figure 4-5- I_m/I_{DD} . (a) as a function of α for fixed values of the duty ratio D.	
(b) as a function of the duty ratio D for fixed values of α	9
Figure 4-6- $V_{DD}/I_{DD}R$. (a) as a function of α for fixed values of the duty ratio D.	
(b) as a function of the duty ratio D for fixed values of α	9
Figure 4-7- V_m/V_{DD} . (a) as a function of α for fixed values of the duty ratio D. (b)	
as a function of the duty ratio D for fixed values of α	9
Figure 4-8- $P_o R/V_{DD}^2$ (a) as a function of α for fixed values of the duty ratio D. (b)	
as a function of the duty ratio D for fixed values of α	1
Figure 4-9- $R/\omega L$ (a) as a function of α for fixed values of the duty ratio D. (b) as	
a function of the duty ratio D for fixed values of α	1
Figure 4-10- The peak of normalized shunt inductor current $i_{L,peak}/I_{DD}$. (a) as a	1
function of α for fixed values of the duty ratio D. (b) as a function of the duty ratio D for fixed values of α	1
Figure 4-11- $\omega C_{x}R$. (a) as a function of α for fixed values of the duty ratio D. (b)	
as a function of the duty ratio D for fixed values of α	1
Figure 4-12- Normalized peak switch current I_{SM}/I_{DD} . (a) as a function of α for	
fixed values of the duty ratio D . (b) as function of the duty ratio D for fixed values of α	1
Figure 4-13- The output power capability c_n . (a) as a function of α for fixed	
values of the duty ratio D . (b) as a function of the duty ratio D for fixed values of α	1
Figure 4-14- The equivalent circuit of the class-E shunt inductor power amplifier including ESRs	1
Figure 4-15- $I_{SM}R/V_{DD}$ as a function of V_{SM}/V_{DD} for fixed values of the duty ratio D .	1
Figure 4-16- Waveforms for the circuit design example obtained from: (a) Theoretical expressions, and simulations by circuit simulator, (b) Experiments	1
Figure 5-1- (a) Basic circuit of the class-E power amplifier (b) Idealized	1
equivalent circuit used in this analysis	1
Figure 5-2- Class-E power amplifier waveforms for any D (a) Gate-to-source	1
driving voltage waveform. (b) Drain-to-source voltage waveform.	
(c) Output voltage	1
Figure 5-3- φ as a function of <i>D</i> for V_{DD}/V_{bi} =18.75, and fixed values of V_g/V_{bi} ,	
for two MOSFETs IRF510 and IRF540, φ decreases as D increases	1
Figure 5-4- $\omega C_{io}R$ as a function of D for $V_{DD}/V_{bi} = 18.75$, and fixed values	
of V_a/V_{bi} , for two MOSFETs IRF510 and IRF540	1
Figure 5-5- V_m/V_{DD} as a function of D for V_{DD}/V_{Li} =18.75 and fixed values of	1

V_g/V_{bi} , for two MOSFETs IRF510 and IRF540
Figure 5-6- $V_{DD}/I_{DD}R$ as a function of D for V_{DD}/V_{bi} =18.75, and fixed values of
V_g/V_{bi} , for two MOSFETs IRF510 and IRF540
Figure 5-7- $\omega^2 L_x C_{i0}$ as a function of <i>D</i> for V_{DD}/V_{bi} =18.75, and fixed values of
V_g/V_{bi} , for two MOSFETs IRF510 and IRF540
Figure 5-8- $V_{s \max}/V_{DD}$ as a function of D for V_{DD}/V_{bi} =18.75, and fixed values of
V_g/V_{bi} , for two MOSFETs IRF510 and IRF540.
Figure 5-9- $I_{MOS,max}/I_{DD}$ as a function of D for V_{DD}/V_{bi} =18.75, and fixed values
of V_g/V_{bi} , for two MOSFETs IRF510 and IRF540
Figure 5-10- The output power capability c_p as a function of D for $V_{DD}/V_{bi} = 18.75$,
and fixed values of V_g/V_{bi} , for two MOSFETs IRF510 and IRF540.
Figure 5-11- The maximum operating frequency normalized by the maximum operating frequency at duty ratio 0.5, as a function of D for V_{DD}/V_{bi} =18.75, and fixed values of V_g/V_{bi} , for two
MOSFETs IRF510 and IRF540.
Figure 5-12- Idealized equivalent circuit of the class-E power amplifier with ESRs
Figure 5-13- Class-E power amplifier waveforms at <i>D</i> =0.3. (a) Theoretical expressions (solid line), and PSpice simulations (dash line). (b) Circuit experiment.
Figure 5-14- Class-E power amplifier waveforms at <i>D</i> =0.7. (a) Theoretical expressions (solid line), PSpice simulations (dash line). (b) Circuit experiment
Figure 6-1- The class-E power amplifier. (a) Basic circuit topology. (b) Idealized
equivalent circuit
Figure 6-2- Nominal waveforms of the class-E power amplifier. (a) Gate-to- source driving voltage waveform. (b) Drain-to-source voltage
waveform. (c) Output voltage Figure 6-3- α as a function of V_{DD}/V_{U} for fixed values of $v_0 = v_0 - 0$ and $V_{U} = 0$
(a) The IRE510 MOSFET (b) The IRE540 MOSFET
Fig.ure 6-4- φ as a function of γ_2 for $V_{DD}/V_{bi} = 25$, and fixed values of γ_1 and
V_g/V_{DD}
Figure 6-5- $\omega C_{i0}R$ as a function of V_{DD}/V_{bi} for fixed values of γ_2 , sinusoidal
(solid line) and square (dash line) gate-source voltage. (a) The IRF510 MOSFET. (b) The IRF540 MOSFET
Figure 6-6- γ_2 as a function of $\omega C_{j0}R$ for $V_{DD}/V_{bi} = 25$, and fixed values of γ_1 and
V_g/V_{DD}
Figure 6-7- V_m/V_{DD} as a function of γ_2 for $V_{DD}/V_{bi} = 25$, and fixed values of γ_1 and

V_g/V_{DD}
Figure 6-8- $V_{DD}/I_{DD} R$ as a function of γ_2 for $V_{DD}/V_{bi} = 25$, and fixed values of γ_1 and V_g/V_{DD}
Figure 6-9- $\omega^2 C_{i0}L_x$ as a function of γ_2 for $V_{DD}/V_{bi} = 25$, and fixed values of γ_1 and
V_{σ}/V_{DD}
Figure 6-10- $V_{\rm S}$ as a function of γ_2 for $V_{\rm DD}/V_{\rm M} = 25$ and fixed values of γ_1 and
V / V_{DD}
Figure 6.11 I / I as a function of x for V / V = 25 and fixed values
of $v_{and} V_{V_{and}}$
Figure 6-12- c_{1} as a function of u_{1} for $V_{1} = 25$ and fixed values of u_{2} and
Figure 0-12- c_p as a function of γ_2 for $v_{DD}/v_{bi} = 25$, and fixed values of γ_1 and
V_g/V_{DD}
Figure 6-13- Rf_{max} as a function V_{DD}/V_{bi} , for IRF510 and IRF540 MOSFE1s,
sinusoidal (solid-line) and square (dash-line) gate-source voltage
Figure 6-14- Idealized equivalent circuit of the class-F power amplifier with
ESRs.
Figure 6-15- Class-E power amplifier waveforms from theoretical expressions,
PSpice simulations, and circuit experiment for the sinusoidal gate-
to-source voltage
Figure 6-16- Class-E power amplifier waveforms from theoretical expressions,
PSpice simulations, and circuit experiment for the square gate-to-
Figure 7-1- The class-E ZVS power amplifier waveforms from PSpice-
simulation using the elements values [81] for IRF510 MOSFET. (a)
For non-zero the MOSFET nonlinear drain-to-source capacitance. (
For zero the MOSFET nonlinear drain-to-source capacitance
Figure 7-2- Class-E power amplifier with a nonlinear shunt capacitance. (a)
Basic circuit topology. (b) Idealized equivalent circuit
Figure 7-5- ϕ as a function of β/v_{DD} for fixed values of the grading coefficient
Figure 7-4- $\rho C = R$ as a function of R/V for fixed values of the grading
$\frac{1}{p_{f}} = \frac{1}{p_{f}} = $
Eigure 7.5 V_{L} / L_{R} as a function of ρ/V_{L} for fixed values of the grading
Figure 7-5- $v_{DD}/I_{DD}k$ as a function of β/v_{DD} for fixed values of the grading
Figure 7-6-V/V as a function of R/V for fixed values of the grading
right r_{DD} as a function of p/r_{DD} for fixed values of the grading coefficient m
Figure 7-7- ωL_{R} as a function of $\beta/V_{\rm ED}$ for fixed values of the grading
coefficient <i>m</i>

Figure 7-8- Normalized peak switch voltage V_{SM}/V_{DD} as a function of β/V_{DD} for	207
fixed values of the grading coefficient <i>m</i> .	
Figure 7-9- $I_{SM}R/V_{DD}$ as a function of β/V_{DD} for fixed values of the grading	
coefficient <i>m</i>	208
Figure 7-10- c_p as a function of β/V_{DD} for fixed values of the grading coefficient	
<i>m</i>	210
Figure 7-11- The equivalent circuit of the class-E power amplifier with taking into accounts ESRs of the switching device and passive elements	211
Figure 7-12- V_{SM}/V_{DD} as a function of $P_o R/V_{DD}^2$ for fixed values of the grading coefficient <i>m</i> .	213
Figure 7-13- The input, switching and output waveforms for the first design example. (a) Theoretical expressions (dash line), PSpice	217
Figure 7-14- The input, switching and output waveforms for the second design example. (a) Theoretical expressions (dash line), PSpice	217
simulations (solid line). (b) Circuit experiment	219

List of Tables

Contents	Page
TABLE 3-1- The IRF510 MOSFET characteristics	73
TABLE 3-2- The values of the elements for the nominal conditions and sub- nominal condition design examples.	77
TABLE 3-3- The values of the elements and power relation for the sub-nominal design example	80
TABLE 4-1- Switching pattern	88
TABLE 4-2- Theoretical predictions, simulations by circuit simulator, and experimental measurements for the circuit design example	118
TABLE 5-1- Parameters of the MOSFETs	132
TABLE 5-2- The values of the elements for two circuit design examples	146
TABLE 5-3- The theoretical, simulated and measured results for the first circuit design example.	148
TABLE 5-4- The theoretical, simulated and measured results for the second circuit design example.	150
TABLE 6-1- Switching pattern	160
TABLE 6-2- Parameters of the MOSFETs	165
TABLE 6-3- The IRF510 MOSFET characteristics	180
TABLE 6-4- The values of the elements for the sinusoidal and square gate-to- source voltage.	183
TABLE 6-5- The theoretical, simulated and measured results for the first circuit design example.	188
TABLE 6-6- The theoretical, simulated and measured results for the second circuit design example.	189
TABLE 7-1- Parameters of the MOSFETs.	201
TABLE 7-2- The values of the elements for two circuit design examples	216
TABLE 7-3- Theoretical predictions Pspice simulations and experimental	-
measurements for the first circuit design example	218
TABLE 7-4- Theoretical predictions, Pspice simulations, and experimental	220
measurements for the second circuit design example	220

List of Abbreviations and Acronyms

AC	Alternating Current
AM	Amplitude Modulation
CAD	Computer Aided Design
CMCD	Current-Mode Class-D
CMOS	Complementary Metal Oxide Semiconductor
dB	Decibel
DC	Direct Current
DE	Disruptive Effect
ESR	Equivalent Series Resistance
FET	Field Effect Transistor
FM	Frequency Modulation
HB	Harmonic Balance
HBT	Hetero-Junction Bipolar Transistor
HEMT	High Electron Mobility Transistor
HF	High Frequency
HFET	Hetero-Structure FET
IC	Integrated Circuit
JFET	Junction FET
MSFET	Metal Semiconductor Fet
MMIC	Monolithic Microwave Integrated Circuit
MN	Matching Network
MOS	Metal Oxide Semiconductor
MOSFET	Metal Oxide Semiconductor Field Effect Transistor
PA	Power Amplifier
PAE	Power Added Efficiency
PCB	Printed Circuit Board
PHEMT	Pseudomorphic HEMT
Q	Quality Factor
RF	Radio Frequency
RFC	Radio Frequency Chock
VMCD	Voltage-Mode Class-D
ZCS	Zero Current Switching
ZCDS	Zero Current Derivative Switching
ZVS	Zero Voltage Switching
ZVDS	Zero Voltage Derivative Switching
ZCS	Zero Current Switching
ZCDS	Zero Current Derivative Switching

Nomenclature

Symbol	Description
A	Amplitude of a Signal
A_m	Magnitude of a Sine Wave Signal
c_p	Out-Put Power Capability
Cs	Shunt Capacitance
C_{ds}	Drain-to-Source Capacitance
C_{gd}	Gate-to-Drain Capacitance
C_{j0}	Zero Bias Capacitance
D	Duty Ratio
f	Operating Frequency
f_{max}	Maximum Operating Frequency
G	Power Gain
io	Output Current
is	Switch Current
I_{DD}	DC-Current
I _{MOS,max}	Peak Switch Current
I_R	Magnitude Of The Load Current
LRFC	DC-Feed
Ls	Shunt Inductance
m	Junction Grading Coefficient
Р	Power
P_{DC}	Dc Power
P_{in}	Input Power
Q	Quality Factor
R	Load Resistance
V_{bi}	Built-In Potential
V_{DD}	DC-Supply Voltage
VS	Switch Voltage
VO	Output Voltage
V_T	MOS Threshold Voltage
W	MOS Channel Width

X	Reactance
X_{dc}	Reactance of the DC-Feed Inductance
Y	Admittance
Ζ	Impedance
Z_n	Impedance at n-th Harmonic
Z_L	Load Impedance
η	Output (Collector/Drain) Efficiency
η_{max}	Maximal Efficiency
η_{tot}	Total Efficiency
heta	Angular Time
arphi	Phase
ω	Angular Frequency

Chapter One

Introduction

1-1-Motivation and Objectives:

The field of switch-mode power amplifiers has been one of the most active areas in research and development of power electronics in the last decades. One of the most important switch-mode power amplifiers is the class-E power amplifier, which is an efficient and important solution to achieve high-efficiency and high operating frequency performances in a lot of various applications, such as the radio-transmitter, dc–dc power converters, oscillator, electronic fluorescent lamp ballast, frequency multiplier, induction heating, and an RF power transmitter of the implanted system. Therefore, the research and development of the class-E power amplifier families has been a very interesting area in recent years.

One of the most extended operation types of the class-E power amplifiers with a shunt inductance is the sub-nominal operation, i.e., only zero-current switching (ZCS) condition that the degree of the design freedom is increased by one. Nevertheless, there are certain aspects with regard to these operation conditions that have not been studied in the technical literature on the matter that should be investigated in order to take the advantages of their actual potential. This research provides an in-depth analysis of uncovered issues regarding the sub-nominal and duty ratio for the class-E power amplifier with a shunt inductor.

Most of the researches devoted to the class-E power amplifier with a shunt capacitance that has been carried out in the nominal operation, which is introduced as zerovoltage switching (ZVS) and zero-voltage derivative switching (ZVDS) conditions. However, their observations and achievements cannot be applied to the design of the class-E power amplifier with arbitrary design specifications such as peak switch voltage, peak