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Abstract

The aim of this work is to construct some iterative algorithms in order to present
an adaptive solution of the operator equation Lu = f where, L : H — H*, H is
a separable Hilbert space with dual H* and f € H*. As typical example we think
of linear differential or integral equations in variational form. By using wavelets or
frames we transform the problem to an equivalent £5-problem and then construct the
adaptive algorithms for solving the problem. Then we show how these algorithms
displays optimal approximation and complexity properties.

Th}e contexts of this thesis are presented in four chapters. First, we will review
the concepts of wavelet, frame, and N-term approximation to obtain the equivalent
problems.

In the second chapter, we use frames to construct corresponding trial spaces for
an adaptive Galerkin scheme and design an algorithm in order to give an adaptive .
approximation solution to the problem.

In the third chapter, by using a wavelet frame we construct an adaptive algorithm
for solving the problem.

Finally, as an example we will present an adaptive wavelet scheme to solve the gen-
eralized Stokes problem. Using divergence free wavelets, the problem is transformed
into an equivalent matrix vector system, that leads to a positive definite system of
reduced size for the velocity. Then we prove that this adaptive method has optimal
computational complexity that is it recovers an approximate solution with desired
accuracy at a computational expense that stays proportional to the number of terms

in a corresponding wavelet-best N-term approximation.
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INTRODUCTION

Let H be a separable Hilbert space with dual H*. We consider the problem of finding.
u € H such that
Lu=f, (0.0.1)

where L : H — H* is a symmetric, positive definite and bounded invertible linear
operator. As typical example we think of linear differential or integral equations in
variational form. Assuming that we have a Riesz basis ¥ for H available, which

-we formally vicw_ as a column vector, by writing v = U t\I/,__the abpve problem is
equivalent to find U € ¢, satisfying the infinite matrix-vector system

GU = f, (0.0.2)

where G = (V,LV) : £y — £5 is bounded invertible, and f = (¥, f) € ¢;. Here (,)
denotes the duality product on (H, H*). Since L is bounded and invertible, (0.0.1)

has a unique solution and

[Lulln- = |luln, weH,

that is there are two positive constants dy, do such that d;||Lullg- < |Jullg <

do||Lu| g~ for all u e H. Also the bilinear form a defined by

a(u,p) := (Lu, v)

1



is symmetric, positive definite and elliptic in the sense that
a(v,v) = |v[l%. - (0.0.3)

It follows that H is a Hilbert space with respect to fchg inner product a with an
equivalent energy norm ||.||2 := a(.,.). In [14, 15], an iterative adaptive method for
solving this system has been developed that for a given tolerance ¢ > 0 yields an
approximate solution U,, where the number of operations and storage locations it
requires is of the same order as the length of the smallest N-term approximation for
U on distance e. This means that the method has optimal computational complexity.
When L and G are symmetric and positive definite, the method consists of the ap-
| plication of the simple damped Richardson iteration onto the infinite system, where
the multiphcatioﬁ of G with current, finitely supported approximation ve.ctor fbr U is>
replaced by an adaptive approximation. The analysis Qf adaptive numerical scheme

for opérator equations is é ﬁeld of enormous current interest. Recent developmehts
for instance in the finite element context, indeed indicate their promising potential
[4, 5, 6, 10, 29, 32]. Moreover, it has also turned out that adaptive schemes based
on wavelets have several important advantages. A typical algorithm uses information
gained during a given stage of the computation to produce a new mesh for the next
iteration. Thus, the adaptive procedure depends on the current numerical resolution
of u. The wavelet methodology differs from other conventional schemesl in so far as
direct use of bases is made which span appropriate complements between successive
approximation spaces. The original problem is first transformed with the aid of suit-
able wavelet Bases into an equivalent problem that is well posed in Euclidian metric.
Then one seeks an iteration scheme for the infinite dimensional problem for whiéh the

error is reduced at each step by at least a fixed ratio. Then, at last, the application of



the involved (infinite dimensional) operators is carried out approximately in an adap-
tive way within éuitable dynamically updated accuracy tolerances. First natural steps
were to use multiresolution spaces spanned by wavelets (6r correspondingly scaling
functions) as test and trial spaces for Galerkin methods. In connection with ellip-
tic boundary value problems suitable wavelet bases lead td asymptotically optimal
preconditioners in terms of simple diagonal scalings in wavelet coordinates. Asymp-
totically optimal means here that the resulting linear systems can be solved within
discretization error accuracy at a computational expense that stays proportional to
the problem size. In that sense such schemes are, in principle, comparable with multi-
grid methods. In the wavelet context it is natural to derive information from the size
of the wavelet coefficients of current approximations, see [3, 7, 9, 17, 18, 20].

Usually, the operator under consideration is defined on a bounded domain 2 ¢ R¢
. or on a closed manifold. Therefore the construction of a wavelet basis with specific
properties on this domain or on the manifold is needed. Although there exist by now
several constructive methods such as [22, 23], none of them seems to be fully satisfying
in the sense that some serious drawbacks such as stability problems cannot be avoided.
One way out could be to use a fictitious domain method [42], however, then the
compressibility of the problem might be reduced. Motivated by these difficulties, we
therefore suggest to use a slightly weaker concept, namely frames.

Frames were first introduced by Duffin and Schaffer [30] in the context of nonhar-
monic Furier series. . Outside of signal processing, frames did not seem to generate

much interest until the ground breaking work of Daubechies, Grossmann, and Meyer



[26] in 1986. Since then the theory of frames began to be more widely studied. Tra-
ditionally, frames have been used in signal processing, image processing, data com-
pression, and sanlpling theory. Recently, the theory is beginning to grow even more
rapidly, since several new applications have been developed. For example, frames are
now used to migrate the effect of losses in packet-based communication systems and
hence to improve the robustness of data transmission [36] and to design high-rate
constellations with full diversity in multiple-antenna code design [37].

Every element of the Hilbert space H has an expansion with respect to the frame
elements, but in contrast to stable multiscale bases, its representation is not nec-
essarily unique. Therefore frame expansions may contain some redundancy. The
redundancy of a frame provide to play an important role in practical problems where
stability and error tolerance are fundamental as, for example, denoising; pattern
matching, or irregular sampling problems [33]. Moreover since one is working with
a weaker concept, the concrete construction of a frame is usually much simplervwhen
compared to stable multiscale bases. The potential of frames in numerical analysis
is an almost unexplored field. One of the first interesting attempts to use frames
for numerical simulation is [43], being a pioneering approach to the application of
wavelet frames to the adaptive solution of operator equations.

In the adaptive method for solving (0.0.1), the use of a frame instead of a Riesz
basis gives also rise to a problem. Since in the adaptive method the matrix-vector
product is replaced by an adaptive approximation, each time ’it is invoked it gives
an error that might ha.vé a component in the, nontrivial, kernel of G. Also clean-up
or coarsening step may introduce such components. Just because these components

are in the kernel of G , they will not be affected by subsequent Richardson steps,



meaning that in the cause of the iteration the component of the current approximation
in the kernel of G may increase. Although this component has no influence on the
obtained approximation for the solution of (0.0.1), that is, after forming the series
with frame elements, it might be responsible costs of each iteration. Under: some
technical assumption on the frame, specially on the projector onto the complement of
the kernel of (G in 45, it is proved that the above effect will not occur or only to such
an extent that also in the frame case the adaptive method has optimal computational

complexity [43].



Chapter 1
BASIC CONCEPTS

We investigate wavelets and frames to obtain the equivalent problem of finding solu-
tion U to equation (0.0.2). Also we will review the concept of N-term approximation

in order to understanding the properties of U that determine its approximability.

1.1 Scaling Functions and Multiresolution Analy-
sis
In this section, we will briefly review the basic concepts .of wavelets and multiresolution
analysis for the construction of wavelets. In general, a set of functions {¥;}i=1 n is
called a system of (mother) wavelets, if the scaled and translated versions of these
functions form a basis of L2(R"™). This means that the resulting L2-basis is obtained
from very easily implementable algebraic modifications of a finite number of these
functions. Let E := {(e1,...,e,)" : ¢; € {0,1}} and E* := E\{0}, a set of functions

{e}eers C L?(R") is called a system of (mother) wavelets, provided the set
{tejn(.) := 27/ (2. — k) - e € B*,j € Z"}, (1.1.1)

form a basis of L2(R™). The most powerful tool for the construction of wavelets

is the multiresolution approximation of functions, which introduced by Mallat and
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Meyer [40, 41]. A multiresolution analysis of L*(R™) is a sequence {Vj}jez of closed

subspaces V; C L%*(R"), which are nested, i.e., V; C V;4; and shift-invariant, i.e.,

fQO)eVv;e f(.—k)eV,, (k€ Zj€Z). Moreover the union of all V; is dense in

L*(R™), while their intersection is {0}. Finally, one requires f(.) € V; if and only if
f(2.) € V;1 for all j € Z and that a function ¢ € V; exists such that Vj is spanned by
its integer translates, which form a Riesz-basis of V. This means there are positive

constants A4 and B such that

Allélle, <11 (- — k)l < Bléllen, (1.1.2)

kezZn

for all £ € ¢5(Z™). Such a function is called generator of the multiresolution analysis.
Thus |
V; =3pan {¢;r: k€Z"}

and hence the generator ¢ is a refinable function (then ¢ is called to be a-refinable),

le.,

¢(z) = Y ad(2z — k). (1.1.3)

kEZ"’
The Laurent-series

a(z) = Z a2 | (1.1.4)

kezn

is called the symbol of ¢, where z = ™% and £ € R" (thus z lies in the n-dimensional
torus T" := {z € C" : || = 1,1 < ¢ < n}). Because of the approximating property
J € Z is often called refinement level.

To construct wavelets one has to find functions ., e € [E*, in some appropriate
complement Wy of V4 in V7, such that Wy is spanned by the integer translates of 1.
Hence defining

W= {f € L*(R"): f(2'.) € Wo},



one has
Vim=V;@W; and L*R") =PW,.
jEZ

The natural choice is to talk Wy as the orthogonal complement of V in V. In
this case one searches for functions v, such that {1.ox : € € E*,k € Z"} forms an
orthonormal basis of Wy. Hence the functions {¢, ;s : e € E*,j € Z,k € Z"} form
an orthonormal basis of L>(R"). In particular, we are interested in wavelets with
compact support. Daubechies [25] was the first who construct compactly supported
orthonormal wavelet-bases in one dimension.

In the framework of pre-wavelets, one only demands that {1.ox : € € E*, k € Z"}
forms an #»-stable system, i.e.,

17 &ae = R)ll2 2 ¢ > N€¥lles >0, (1.1.5)
e€E* keZ™ ecE~x .

instead of requiring that the above system forms an orthonormal basis of Wy. That
means we only have orthogonality between different refinement levels. The theory
of pre-wavelets was described by Jia and Micchelli [38] in very general terms. This
concept éllows more flexibility in the construction of the functions .. Another very
important property of pre-wavelets is that if one starts with a compactly supported
generator ¢, then the pre-wavelets can be chosen as compactly supported functions,

too. In the orthonormal setting this is generally not true.

1.2 Frames

Assume that H is a separable Hilbert space with dual H*, A is a countable set of

indices and ¥ = (¢))aea C H is a frame for H. This means that there exist constants



0 < A < B < oo such that

AlfIE <D WLwIP < BlflG, VFeH, (1.2.1)
A

or equivalently (by the Riesz mapping),
Allf I < NFONZ, < BlIfIE-, Yf € HY, (1.2.2)

where f) = (f(lb))A = ({f,¥»))x. For an index set A C A, (¥2) e is called a
frame sequence, if it is a frame for its closed span. We assume that (1)),.5 is a frame
sequence with bounds A, B, for all finite index sets A CA.

For the frame W, let T : £5(A) — H be the synthesis operator

T((ex)r) = D extha,

AEA

and let T* : H — £3(A) (or T* : H* — {3(A)) be the analysis operator

T*(f) = ((f, %)),\-

Also, let S :=T7T*: H — H be the frame operator

NOED IRV

A
Note that T is surjective, T* is injective and T* is the adjoint of T. Because of (1.2.1)

or (1.2.2) T is bounded, in fact we have
ITl = 1T"|l < VB. (1.2.3)

It was shown in [12], S is a positive invertible operator satisfying Aly < S < Bly

and B~'Iy < S7' < A7'Iy. Also, the sequence

U = (Ya)rea = (S™%2)rer
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is arframe (called the canonical dual frame) for H with bounds B!, A~!. Every
f € H has the expansion
=Y (= ()0
A A
Since Ker(T) = (Ran(T*))+, we have f5(A) = Ran(T™)@Ker(T). Thus the orthbgonal

projection @ of a sequence (cy)xen € f2(A) onto the Ran(T™) is given by
Qex)rer = ((Z exS™x, ¥5))jen,
Y

that is, @ = T*S™IT : £5(A) — £3(A). For more details see [12].
A complete sequence (¥)xea in H is called a Riesz basis if there exist constants

0 < A, B < oo such that

AllCIE,m <l ZCA%“?; < B|IClIz,
B

for all finite sequences C' = (cj)aea- The following conditions are equivalent:

(1) (¥r)aea is a Riesz basis for H.

(17) The coefficients ¢, for the series expansion with 1, are unique, so the synthesis
operator T is injective.

(174) The analysis operator T* is surjective.

() (¥a)ren and (JA)AE,\ are biorthogonal.

For the proof see [12].

Also, we recall that fora > 1,b > 0 and ¥ € H, a frame for H of the form {agw(ajx—
kb)};kez is called a wavelet frame for H (in this case H is considered as a space of

functions).



