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Abstract

Let C(X) denote the uniform algebra of continuous complex valued functions on a

compact Hausdorff space X with the uniform norm ‖f‖X = sup{|f(x)| : x ∈ X}.

A subalgebra A of C(X), which contains the constants and separates the points of

X, is called a function algebra on X. If the function algebra A on X is equipped

with an algebra norm and it is complete under this norm then A is called a Banach

function algebra on X. In particular, if the norm of the Banach function algebra A

on X turns out to be the uniform norm then it is called a uniform algebra on X.

Let X be a compact subset of Cn. The subalgebra of C(X), which is generated

by the polynomials, or rational functions on X with poles off X, is denoted by P (X)

or R(X), respectively. The subalgebra of C(X) consisting of all analytic functions

on the interior of X is denoted by A(X). The above subalgebras of C(X) are called

standard uniform algebras on X. The maximal ideal space and the Shilov boundary

of the above uniform algebras as well as the approximation problem among these

algebras have been studied in the last decades. For example, several criteria such

as Hartogs-Rosenthal Theorem and Vitushkin’s Theorem for the equality R(X) =

C(X) have been presented. Moreover, the maximal ideal spaces of P (X), R(X) and

A(X) have been characterized.

We extend the above standard uniform algebras as follows: Let X and K be

compact subsets of Cn and K ⊆ X. We take P (X,K) = {f ∈ C(X) : f |K ∈ P (K)},

R(X,K) = {f ∈ C(X) : f |K ∈ R(K)}, A(X,K) = {f ∈ C(X) : f |K ∈ A(K)}.

We characterize the maximal ideal space and the shilov boundary of these algebras

and then discuss the approximation problem among them when X is taken to be

fixed but K changes. In particular, we extend the Hartogs-Rosenthal as well as the

iv



Vitushkin’s Theorems. Moreover, we show that P (X,K) and R(X,K) are finitely

generated under certain conditions.

We also extend the class of Lipschitz algebras on compact metric spaces and

study some properties of these Banach function algebras. For example, we deter-

mine the maximal ideal space of these extended Lipschitz algebras, and in particular,

we show that the analytic Lipschitz algebra LipA(X,K,X) is natural when K and

X are compact plane sets. Moreover, we extend the class of Dales-Davie algebras of

infinitely differentiable functions on compact plane sets and study some properties

of these interesting Banach function algebras.

2000 Mathematics subject classification: 46J10, 46J15.

Keywords and phrases: Uniform algebras, Banach function algebras, Stan-

dard uniform algebras, Extended Lipschitz algebras, Maximal ideal space, Shilov

boundary, Polynomial and rational approximation, Peak points, Planar measure,

Vitushkin’s theorem, Extended Dales-Davie algebras, Hartogs-Rosenthal theorem.
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Chapter 1

Preliminaries

1.1 Notations

Throughout, N is the set of all positive integers, R is the set of all real numbers, C

is the set of all complex numbers, and Cn is the complex n-space.

Let X be a topological space, and K,T ⊆ X. We denote the interior of K by

int(K), the closure of K by K, and the boundary of K by bd(K) so that bd(K) =

K ∩ (Kc), where Kc is the complement of K. A neighborhood of K is an open

subset U of X such that K ⊂ U . We denote the symmetric difference of K and T

by K + T , and the set of all continuous complex-valued functions on X by C(X).

Let X be a compact Hausdorff space, and let K be a closed subset of X. For

f ∈ C(X), the uniform norm (or sup-norm) of f on K is

‖f‖K = sup{|f(x)| : x ∈ K}.

Suppose that f is a continuous function on X, and that {fn} is a sequence of

continuous functions on X. Then ‖fn − f‖X → 0 if and only if fn −→ f uniformly

on X. A subset S of C(X) is self-adjoint if f , the complex conjugate of f , belongs

to S whenever f ∈ S.

Certain subsets of C are defined as follows: Let z ∈ C and r > 0. Then

D(z; r) = {ζ ∈ C : |ζ − z| < r} and T(z; r) = {ζ ∈ C : |ζ − z| = r}

1
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are the open disc and circle, with center z and radius r, respectively. We set

∆(z, r) = D(z; r) ∪ T(z; r) = D(z; r).

1.2 Measure Theory

Some basic definitions and results in measure theory are presented in this section.

The elementary measure theory, that we assume to be known, can be found in [10]

and [25].

Definition 1.2.1. Let X be a set equipped with a σ-algebraM. A positive measure

on M (or on (X,M)) is a function µ : M−→ [0,+∞] such that:

(i) µ(∅) = 0,

(ii) If {Ej}∞j=1 is a sequence of disjoint sets in M, then µ(
⋃∞

j=1Ej) =
∑∞

j=1 µ(Ej).

Definition 1.2.2. Let X be a topological space. The σ-algebra generated by the

family of open sets in X is called the Borel σ-algebras on X and is denoted by BX .

For example, BR, BRn and BCn are Borel σ-algebra . A measure on BX or (X,BX)

is called a Borel measure.

Definition 1.2.3. Let (X,M) and (Y,N ) be two measurable spaces. The function

f : X −→ Y is measurable if for every E ∈ N , f−1(E) ∈M.

If E ⊆ X, the characteristic function χE is defined by

χE(x) =

{
1 x ∈ E
0 x /∈ E

The function f : X −→ C is called simple if f is measurable and range(f) is a

finite subset of C. If range(f) = {z1, z2, ..., zn} and if Ej = f−1(zj) for 1 ≤ j ≤ n

then f =
∑n

j=1 zjχEj
.

If f : X −→ C is a measurable function, then there is a sequence {ϕn} of simple

functions such that 0 ≤ |ϕ1| ≤ |ϕ2| ≤ ... ≤ |ϕn| ≤ |f |, ϕn −→ f pointwise, and

ϕn −→ f uniformly on any set on which f is bounded [10; Theorem 2.10].
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Definition 1.2.4. Let (X,M, µ) be a measure space. We denote the space of all

measurable functions from X to [0,+∞] by L+. If ϕ =
∑n

j=1 ajχEj
is a simple func-

tion in L+, we define the integral of ϕ with respect to µ by
∫
ϕdµ =

∑n
j=1 ajµ(Ej). If

f ∈ L+ we define the integral of f by
∫
fdµ = sup{

∫
ϕdµ : 0 ≤ ϕ ≤ f, ϕ is simple}.

The function f ∈ L+ is called integrable if the above supremum is finite.

For a real measurable function f we define

E1 = {x ∈ X : f(x) > 0}, E2 = {x ∈ X : f(x) < 0}.

If f+ = fχE1 and f− = fχE2 then f = f+ − f− and f+, f− ∈ L+. We define

the integral of f by
∫
fdµ =

∫
f+dµ −

∫
f−dµ. We say that f is integrable if f+

and f− are integrable. It is easy to see that f+, f− ≤ |f | ≤ f+ + f−.

Next, if f is a complex valued measurable function, we say that f is integrable

if
∫
|f |dµ <∞, and define∫

fdµ =

∫
Refdµ+ i

∫
Imfdµ.

We denote the space of all integrable functions by L1(µ). In general, Lp(µ) is

the set of all measurable functions f such that |f |p ∈ L1(µ), where p ≥ 1. Moreover,

‖f‖p = (
∫
|f |pd|µ|)

1
p for f ∈ Lp(µ).

Theorem 1.2.5. (The Dominated Convergence Theorem)[10; 2.24, page 54]

Let {fn} be a sequence in L1(µ) such that fn −→ f a.e. and there exists a non-

negative g ∈ L1(µ) such that |fn| ≤ g a.e. for all n ∈ N. Then f ∈ L1(µ) and∫
fdµ = lim

n→∞

∫
fndµ.

Let (X,M, µ) and (Y,N , ν) be measure spaces. M⊗N is the σ-algebra gener-

ated by A = {
⋃n

j=1Aj × Bj : Aj ∈ M, Bj ∈ N , n ∈ N}. For
⋃n

j=1Aj × Bj ∈ A we

define (µ× ν)(
⋃n

j=1Aj ×Bj) =
∑n

j=1 µ(Aj)ν(Bj). It is easy to see that the product

of µ and ν, µ× ν, generates a measure on X × Y , for instance, see, [10, VII].

Let (X,M, µ) and (Y,N , ν) be measure spaces. If E ⊆ X × Y , for x ∈ X and

y ∈ Y we define the x− section Ex and the y − section Ey by

Ex = {y ∈ Y : (x, y) ∈ E}, Ey = {x ∈ X : (x, y) ∈ E}.
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Also if f is a function on X × Y , we define the x− section fx and the y − section

f y by

fx(y) = f y(x) = f(x, y).

Theorem 1.2.6. (Fubini’s Theorem)[10; 2.37, page 65] Suppose (X,M, µ) and

(Y,N , ν) are σ-finite measure spaces. If f ∈ L1(µ × ν), then fx ∈ L1(ν) for a.e.

x ∈ X, fy ∈ L1(µ) for a.e. y ∈ Y , the functions g(x) =
∫
fxdν and h(y) =

∫
f ydµ

are in L1(µ) and L1(ν), respectively, and∫
fd(µ× ν) =

∫ ∫
f(x, y)dν(y)dµ(x) =

∫ ∫
f(x, y)dµ(x)dν(y).

Definition 1.2.7. Let (X,BX , µ) be a Borel measure space. Let N be the union of

all open sets U ⊂ X such that µ(U) = 0. Then N is open, and if V is open and

V \N 6= ∅, then µ(V ) > 0. We define support of µ as the complement of N . In the

other words,

supp(µ) = ∩{U c : U is open and µ(U) = 0}.

The function ν : M −→ [−∞,+∞] on the measure space (X,M) is called a

signed measure if (i) ν(∅) = 0, (ii) ν assumes at most one of the values +∞ or −∞,

and (iii) if {Ej} is a sequence of disjoint sets in M, then ν(
⋃∞

j=1Ej) =
∑∞

j=1 ν(Ej),

where the latter series converges absolutely if ν(
⋃∞

j=1Ej) is finite.

If ν is a signed measure then we can write ν = ν+ − ν− where ν+ and ν− are

positive measures.

A complex measure on the measurable space (X,M) is a map ν : M −→ C

such that (i) ν(∅) = 0, and (ii) if {Ej} is a sequence of disjoint sets in M, then

ν(
⋃∞

j=1Ej) =
∑∞

j=1 ν(Ej), where the series on the right is convergent. Note that

the convergence is, in fact, absolute convergence.

The Lebesgue measure on R is the measure m so that, m([a, b]) = b − a, the

Lebesgue-measure on Rn is the measurem so that, m([a1, b1]×[a2, b2]×...×[an, bn]) =

(b1 − a1)(b2 − a2)...(bn − an), the Lebesgue measure on C is the measure m so that,

m(B(z0, r)) = πr2, and the Lebesgue measure on Cn is the measure m so that,

m(B(z1, r1)×B(z2, r2)× ...×B(zn, rn)) = πr2
1.πr

2
2.....πr

2
n.[10]
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Definition 1.2.8. A positive Borel measure ν on Rn is called regular if (i) ν(K) <

∞ for every compact set K, (ii) ν(E) = inf{ν(U) : U is open,E ⊆ U} and ν(E) =

sup{ν(K) : K is compact,K ⊆ E} for every Borel set E. A complex measure is

called a Borel regular meagure if |µ| is a positive Borel measure which is regular.

For the Lebesgue measuremeasure!Lebesgue m on Rn we have

m(E) = inf{m(U) : U is open,E ⊆ U}

= sup{m(K) : K is compact,K ⊆ E}

for every Borel set E in Rn[10].

Definition 1.2.9. Let (X,BX) be a Borel σ-algebra. We denote the set of all regular

Borel measures on X by M(X).

Theorem 1.2.10. (Riesz Representation Theorem)[25] Suppose X is a locally

compact Hausdorff space. Then the dual space of C0(X) is M(X).

Theorem 1.2.11. (Holder’s Inequality)[10; 6.2] Let 1 < p < +∞ and p−1 +

q−1 = 1 (in other words, q = p
p−1

). If f and g are measurable functions on X, then

‖fg‖1 ≤ ‖f‖p‖g‖q

In particular, if f ∈ Lp(µ) and g ∈ Lq, then fg ∈ L1.

Theorem 1.2.12. (Green’s Formula)[22; 5.3.9] Let f be a continuously differ-

entiable function on R2 which vanishes outside a compact set. Set fz = 1
2
(∂f

∂x
+ i∂f

∂y
).

Then for every α in C,

f(α) =
−1

π

∫ ∫
R2

fz(x, y)

x+ iy − α
dxdy.

Lemma 1.2.13. [22; 5.3, Lemma 1 ] Let X be a compact plane set and σ be a

positive measure in M(X). Then for almost all α in the plane, (z − α)−1 ∈ L1(σ).

Furthermore, if F (z) =
∫

X
dσ(ζ)
|ζ−z| , then F is integrable (with respect to Lebesgue mea-

sure in the plane) over every compact set.

Lemma 1.2.14. [22; 5.3, Lemma 2 ] Let X be a compact set in the plane and

µ ∈M(X). If
∫

X
dµ(ζ)
ζ−z

= 0 for almost all z, then µ = 0.

By the above two lemmas we can conclude that if µ ∈ M(X) such that µ 6= 0,

then there exists a point z0 ∈ X such that
∫

X
|z − z0|−1d|µ|(z) <∞ and∫

X

(z − z0)
−1dµ(z) 6= 0.
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1.3 Complex Analysis

We recall some results from the theory of analytic functions of one complex variable.

The elementary complex function theory, that we assume to be known, can be found

in [6], [11] and [25].

A subset D of the complex plane is a domain if D is open and connected. For

example, open half planes and open disks are domains. An example of an open set

which is not a domain is the union of the open upper and lower half planes, i.e.

U = C\R.

Definition 1.3.1. A complex function f is analytic at a ∈ C if there exists a

neighbourhood U of a such that f is differentiable at each point of U , that is,

f ′(z0) = lim
z→z0

f(z)− f(z0)

z − z0

exists for every z0 ∈ U .

Theorem 1.3.2. (Liouville’s Theorem)[11;10,23] Every bounded entire function

is constant.

Let U be a non-empty open subset of R2. As in section 1.1, C(U) denotes the

space of all continuous functions on U . For n ∈ N, we define C(n)(U) to be the set of

all functions on U whose partial derivatives (with respect to the real variables x, y)

up to order n exist and are continuous on U , and we define C(∞)(U) =
⋂∞

n=1C
(n)(U).

The first-order partial differential operators ∂
∂z

and ∂
∂z

are defined on C(1)(U) by

∂

∂z
=

1

2
(
∂

∂x
− i

∂

∂y
) and

∂

∂z
=

1

2
(
∂

∂x
+ i

∂

∂y
).

It is known that a function f ∈ C(1)(U) is analytic on U if and only if ∂f
∂z

= 0 on

U , and the differential operator ∂
∂z

, when applied to an analytic function f , coincides

with the usual complex derivative of f , that is, (∂f
∂z

)(a) = f ′(a) for all a ∈ U .

If X is a closed subset of R2 then C(n)(X) is the set of all functions whose partial

derivatives up to order n exist in a neighbourhood of X and are continuous on X.

Theorem 1.3.3. (Maximum Modulus Principle)[11; III, page 88] Let f(z) be

a complex-valued analytic function on a bounded domain D such that f(z) extends

continuously to the boundary bd(D) of D. If |f(z)| ≤ M for all z ∈ bd(D), then

|f(z)| < M for all z ∈ D.
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Lemma 1.3.4. [11; XIII, page 343 ] Let K be a compact subset of the complex

plane, let U be a connected open subset of the extended complex plane C∗ disjoint

from K, and z0 ∈ U . Every rational function with poles in U can be approximated

uniformly on K by rational functions with poles at z0.

By approximating with rational functions and then using the above lemma to

translate the poles, we obtain immediately the following sharper version of Runge’s

theorem.

Theorem 1.3.5. [11; XIII, page 344 ] Let K be a compact subset of the complex

plane, and suppose that f(z) is analytic on an open set containing K. Let S be a

subset of C∗\K such that each connected component of C∗\K contains a point of S.

Then f(z) can be approximated uniformly on K by rational functions with poles in

S.

1.4 Functional Analysis

In this section, we shall gather together some results of functional analysis for easy

reference.

Throughout this thesis, all vector spaces are assumed to be over the complex

field C. Terms and concepts of basic real and functional analysis, which we have

not defined or discussed, can be found in [5], [7] and [24].

A topological vector space is a vector space X together with a topology such

that with respect to this topology

(i) every point of X is a closed set,

(ii) the map X ×X −→ X defined by (x, y) 7−→ x+ y is continuous,

(iii) the map C×X −→ X defined by (α, x) 7−→ αx is continuous.

A topological vector space X is called locally convex, if there is a local base at

0 ∈ X whose members are convex.

A vector space X is said to be a normed space if for every x ∈ X there is

associated a non-negative real number ‖x‖, called the norm of x, such that for every

x, y ∈ X and any scalar α,
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(i) ‖x‖ = 0 if and only if x = 0,

(ii) ‖x+ y‖ ≤ ‖x‖+ ‖y‖,

(iii) ‖αx‖ = |α|‖x‖.

If ‖.‖ satisfies only (ii) and (iii), then it is called a semi−norm on X. Every normed

space (X, ‖.‖) is a locally convex topological vector space. A complete normed space

is called a Banach space.

For a topological vector space X, a linear functional on X is a linear mapping of

X into C. It is known that a linear functional f on X is continuous if and only if f

is continuous at 0 and if and only if f is bounded in some neighborhood V of 0 [24;

Theorem 1.18]. For a topological vector space X, the set of all continuous linear

functionals on X is denoted by X∗ and is called the dual space of X. Clearly, X∗ is

a vector space, and if (X, ‖.‖) is a normed space then X∗, equipped with the norm

‖f‖ = sup{|f(x)| : x ∈ X, ‖x‖ ≤ 1},

is a Banach space [24; Theorem 4.1].

Let X be a topological vector space with the dual space X∗. Then every x ∈ X

induces a linear functional x̂ on X∗ defined by x̂(f) = f(x) and X̂ = {x̂ : x ∈ X}

separates the points of X∗. The w∗-topology(or weak topology induced by X̂) on X∗

is the weakest topology on X∗ under which every x̂ is a continuous linear functional

on X∗. It is known that X∗ with the w∗-topology is a locally convex topological

vector space whose dual space is X̂ [24; Theorem 3.10].

1.5 Banach Algebras

We now turn to the definitions and fundamental properties of Banach Algebras. The

elementary theory of Banach Algebras can be found in many texts; for example, [5],

[16], [24] and [32].

An algebra is a complex vector space A together with a multiplication, called an

algebra product, A × A −→ A, (a, b) 7−→ ab, which is associative and respects the

vector operations:
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a(b+ c) = ab+ ac, a(bc) = (ab)c,

(b+ c)a = ba+ ca, λ(ab) = (λa)b = a(λb),

for all a, b, c ∈ A and λ ∈ C. We say that A is commutative if

ab = ba (a, b ∈ A).

A subalgebra of A is a linear subspace B of A such that B is closed under

multiplication, that is, ab ∈ B whenever a, b ∈ B. We say that an algebra A is

unital if A has an identity, i.e., there is an element 1 ∈ A such that 1a = a1 = a, for

all a ∈ A. An element a ∈ A is invertible if it has an inverse, that is, if there exists

an element b ∈ A such that ab = ba = 1. If a ∈ A is invertible, then the inverse of a

is unique and is denoted by a−1. We denote the set of all invertible elements of an

algebra A by Inv(A).

Let A be an algebra. An algebra norm on A is a norm ‖.‖ on A such that

‖ab‖ ≤ ‖a‖‖b‖ (a, b ∈ A).

If ‖.‖ is an algebra norm on A, then (A, ‖.‖) is called a normed algebra. A complete

normed algebra is a Banach algebra.

For a normed algebra A, the multiplication (a, b) 7−→ ab, A × A −→ A is

continuous, i.e., if an −→ a and bn −→ b then an.bn −→ ab. Conversely, according

to Theorem 10.2 in [24], if (A, ‖.‖) is a Banach space as well as an algebra with

identity 1, in which multiplication is continuous, then there is an algebra norm ‖.‖′

on A which is equivalent to ‖.‖ and which makes A into a Banach algebra such that

‖1‖′ = 1.

Let ‖.‖ be a norm on an algebra A, and suppose that there exists C > 0 such

that

‖ab‖ ≤ C‖a‖‖b‖ (a, b ∈ A).

Set ‖a‖′ = C‖a‖(a ∈ A). Then ‖.‖′ is an algebra norm on A which is equivalent to

‖.‖, and (A, ‖.‖′) is a Banach algebra whenever (A, ‖.‖) is complete.
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A normed algebra (A, ‖.‖) is called a unital normed algebra if A has an identity

1 and ‖1‖ = 1. If (A, ‖.‖) is a Banach algebra with identity, then there is a norm

‖.‖′, equivalent to ‖.‖, such that (A, ‖.‖′) is a unital Banach algebra [8; Proposition

2.1.9]. Thus we may always suppose that a Banach algebra with an identity is a

unital Banach algebra.

Let A be a unital Banach algebra, and let a ∈ A. The spectrum Sp(a,A) of a is

the set of all complex numbers λ such that λ1 − a is not invertible in A. In other

words,

Sp(a,A) = {λ ∈ C : λ1− a /∈ Inv(A).}

The spectral radius of a is the number

ρ(a) = sup{|λ| : λ ∈ Sp(a,A)}.

If there is no ambiguity, we write Sp(a) instead of Sp(a,A).

Theorem 1.5.1. [24; Theorem 10.13 ] If A is a unital Banach algebra and a ∈ A,

then

(i) the spectrum Sp(a) of a is non-empty and compact.

(ii) the spectral radius ρ(a) of a satisfies

ρ(a) = lim
n→∞

‖an‖
1
n = inf{‖an‖

1
n : n ∈ N}.

Whether an element of A is or is not invertible in A is a purely algebraic property.

The spectrum and the spectral radius of an element a ∈ A are thus defined in terms

of the algebraic structure of A, regardless of any topological considerations. On the

other hand, limn−→∞ ‖an‖ 1
n depends obviously on metric properties of A. This is

one of the remarkable features of the spectral radius formula.

In the following let X be a compact Hausdorff space. For A ⊂ C(X), the

annihilator of A is

A⊥ =
{
µ ∈M(X) :

∫
fdµ = 0, for every f ∈ A

}
.

Proposition 1.5.2. Let A and B be closed subalgebras of C(X). Then A ⊆ B if

and only if B⊥ ⊆ A⊥.
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Proof. By the Hahn-Banach theorem it is immediate.

Theorem 1.5.3. (Stone-Weierstrass)[22; 3.2.3] Suppose A is a closed subalgebra

of C(X) which separates the points of X and is self-adjoint. Then either A = C(X)

or there is a point x ∈ X such that A is the maximal ideal Ix = {f ∈ C(X) : f(x) =

0}.

1.6 Commutative Banach Algebras and Gelfand

Transforms

In this section, we give some results about commutative Banach algebras. An ideal

in a commutative algebra A is a subspace I ⊆ A such that ab ∈ I whenever a ∈ A

and b ∈ I. If I 6= A then I is a proper ideal in A. A proper ideal M in A is said to

be maximal if for every ideal I in A the condition M ⊆ I ⊆ A implies that I = M

or I = A. No proper ideal of A contains any invertible element of A. If A is a

commutative unital algebra, an argument using the Zorn’s lemma shows that every

proper ideal of A is contained in a maximal ideal of A.

Let A be a commutative Banach algebra. Since the algebra product (a, b) 7−→ ab

is continuous, if I is an ideal [a proper ideal] in A, then its closure I is also an ideal

[a proper ideal] in A. Moreover, if M is a maximal ideal in A, then M is closed.

Theorem 1.6.1. [2; Theorem 3.1.3 ] Let A be a commutative algebra with identity

1. Then the following sets are identical:

(i) the intersection of all maximal ideals in A,

(ii) the set of all elements a ∈ A such that 1− ab is invertible in A, for all b ∈ A.

The subset of A having the properties of the above theorem is called the radical

of A, denoted by radA. Since any intersection of closed ideals in a Banach algebra

A is also a closed ideal, radA is a closed ideal in A. The algebra A is said to be

semi-simple if radA = 0.

Let A and B be algebras. A linear map θ : A −→ B is an algebra homomor-

phism if θ(ab) = θ(a)θ(b), for all a, b ∈ A. If θ is a bijection, then θ is an algebra
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isomorphism. The kernel of θ, denoted by kerθ, is the set {a ∈ A : θ(a) = 0}.

Clearly, kerθ is an ideal in A. If A and B are normed algebras, then kerθ is a closed

ideal in A if θ is continuous.

Let A be a Banach algebra. A complex homomorphism (or character) on A is a

nonzero algebra homomorphism h : A −→ C.

It is well-known that, for every Banach algebra A, every complex homomorphism

h on A is continuous and ‖h‖ ≤ 1. If A is a unital Banach algebra, then h(1) =

‖h‖ = 1, moreover, h(a) 6= 0 for every invertible element a. We denote the set of all

complex homomorphisms on A by MA.

Theorem 1.6.2. [24; Theorem 11.5 ] Let A be a commutative unital Banach algebra.

Then

(i) if h ∈MA, the kernel of h is a maximal ideal of A,

(ii) every maximal ideal of A is the kernel of some h ∈MA,

(iii) an element a ∈ A is invertible if and only if h(a) 6= 0 for all h ∈MA,

(iv) Sp(a) = {h(a) : h ∈MA}, for all a ∈ A,

(v) ρ(a) = sup{|h(a)| : h ∈MA}, for all a ∈ A.

Let A be a commutative unital Banach algebra. For every a ∈ A the mapping

â : h 7−→ h(a), MA −→ C is the Gelfand transform of a, and the mapping a 7−→ â,

A −→ Â, is the Gelfand transform of A, where Â = {â : a ∈ A}. The Gelfand

topology of MA is the weak topology induced by Â, that is, the weakest topology

that makes every â continuous. A basic neighbourhood of φ ∈MA is of the form

V (φ;x1, ..., xn; ε) = {ψ ∈MA : |ψ(xi)− φ(xi)| < ε for i = 1, ..., n},

for arbitrary positive integer n, elements x1, ..., xn ∈ A, and ε > 0. Thus a net {φα}

in MA converges to φ in the Gelfand topology of MA if and only if φα(x) −→ φ(x)

for all x ∈ A.

In fact, the Gelfand topology on MA is the relative topology on MA induced by

the w∗-topology on A∗. If A is a unital Banach algebra, then MA is a nonempty
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w∗-closed subset of {f ∈ A∗ : ‖f‖ ≤ 1}, the unit ball of A∗. Therefore, by Banach-

Alaoglu Theorem, MA is a w∗-compact space.

Let A be a unital Banach algebra. Since there is a one-one correspondence be-

tween the maximal ideals of A and the complex homomorphism on A, MA equipped

with its Gelfand topology, is called the maximal ideal space(or character space) of

A.

Theorem 1.6.3. [5; Theorem 4.17 ] Let A be a unital commutative Banach algebra.

Then

(i) MA is a compact Hausdorff space,

(ii) the mapping a 7−→ â is an algebra homomorphism of A into C(MA),

(iii) Sp(a) = â(MA) = {h(a) : h ∈MA}, for all a ∈ A,

(iv) ρ(a) = ‖â‖ = sup{|h(a)| : h ∈MA}, for all a ∈ A.

We regard Â as a subalgebra of C(MA). For every a ∈ A

‖â‖ = sup{|h(a)| : h ∈MA} = sup{|λ| : λ ∈ Sp(a)}

= inf{‖an‖
1
n : n = 1, 2, 3, ...} ≤ ‖a‖

1.7 Banach Function Algebras

In this section, we recall some elementary properties of Banach function algebras.

Let X be a compact Hausdorff space. Then C(X), the space of all continuous

complex-valued functions on X with the pointwise multiplication, is a commutative

unital algebras, and the uniform norm ‖.‖X is a complete algebra norm on C(X)

so that (C(X), ‖.‖X) is a commutative unital Banach algebra. It is known that the

maximal ideal space of C(X) is homeomorphic to X. See, for example, [24;section

11.13 (a)] or [12; I.3.1].

Definition 1.7.1. Let X be a compact Hausdorff space. A function algebra on X

is a subalgebra A of C(X) which contains the constant functions and separates the

points of X. If there is a norm ‖.‖ on A such that (A, ‖.‖) is a normed algebra,


