IN THE NAME OF ALLAH

ALUMINA IN METHANESULFONIC ACID (AMA) AS A NEW REAGENT FOR SYNTHESIZING OF XANTHONES AND **BECKMANN REARRANGEMENT**

A THESIS BY MONA HOSSEINI SARVARI

SUBMITED TO THE SCHOOL OF GRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF MASTER OF SCIENCE IN **ORGANIC CHEMISTRY**

SHIRAZ UNIVERSITY SHIRAZ.IRAN

EVALUATED AND APPROVED BY THE THESIS COMMITTEE:

EXCELLENT

H. Shargi, Ph.D., Prof. of Chemistry

(Chairman).

A. Banihashemi, Ph.D., Prof. of Chemistry.

H. Firouzabadi, Ph.D., Prof. of Chemistry.

B. Tamami, Ph.D. Prof. of Chemistry.

JANUARY 1999

1 24 404

THIS THESIS IS DEDICATED

TO

MY MOTHER AND FATHER,

THE TEACHERS OF MY LIFE

ACKNOWLEDGEMENT

I would like to express my grateful thanks to my supervisor Dr.

H. Sharghi, for his invaluable guidance, advise and continuous encouragement throughout this work.

I also express my sincer thanks to:

Shiraz University, research council for financial support. Prof. H. Firouzabadi, A. Banihashemi and B. Tamami for their helpful discussions during my trasitionary period into this work.

Mr. A. R. Rezaee for recording ¹H-NMR spectra.

Mrs. Almmasi for recording Mass spectra.

ABSTRACT

Alumina in Methanesulfonic Acid (AMA) as a New Reagent for Synthesizing of Xanthones and Beckmann Rearrangement

By

Mona Hosseini Sarvary

This thesis is concerned with the synthesis of some xanthone derivatives and Beckmann rearrangement. A comprehensive review of the literature dealing with the properties and synthetic methodologies of xanthones and the stereochemistry, mechanism and methods for Beckmann rearrangement are discussed in PART A and B, CHAPTER ONE.

Chapter 2 describes the synthesis of some hydroxy xanthones in high yields. 1,6-Dihydroxyxanthone (10) was also obtained in high yield from condensation of γ -resorcynic acid in AMA. It is found that some hydroxyxanhtones can be obtained by condensation of gresorcynic acid and phenols.

Beckmann rearrangement describes in Methanesulfonic acid/Alumina (AMA). Afterwards, we have developed an efficient one-pot method to convert directly ketones and aldehydes to amides by means of AMA and Hydroxylamin hydrochloride.

TABLE OF CONTENTS

LIST OF TABLES	VII
LIST OF FIGURES	VIII
ABBREVIATIONS	X
CHAPTER 1: INTRODUCTION AND LITERATURE REVI	EWE
PART A: SYNTHESIS OF XANTHONES	1
1.1 Introduction	1
1.2 Occurrence and Natural Distribution of Xanthones	1
1.3 Extraction, Purification and Recognition	2
1.4 Biological Properties of Xanthones	2
1.5 Methods of Synthesis for Xanthone Derivatieves	4
1.5.1 Micheal-Kustanseki Method	5
1.5.2 Ullmann Method	8
1.5.3 Robinson-Nishikawa Method	10
1.5.4 Asahino-Tanase Method	10
1.5.5 Tanase Method	11
1.5.6 Friedel-Crafts Method	12
1.5.7 Oxidative Coupling	14
1.5.8 Methods for Cyclization of Benzophenones	14
1.5.9 Other Methods	14

PART B: BECKMANN REARRANGEMENT	15
1.6 Introduction	15
1.7 Stereochemistry of the Rearrangement	16
1.8 Mechanism	16
1.9 Methods for Beckmann Rearrangement	17
1.9.1 Rearrangement by Sulfuric Acid	17
1.9.2 Rearrangement by Phosphorous Pentachloride	18
1.9.3 Rearrangement by Phosphorous Pentoxide	19
1.9.4 Rearrangement by Acid Halides	19
1.9.5 Rearrangement by Formic Acid	20
1.9.6 Rearrangement by Polyphosphoric Acid	20
1.9.7 Rearrangement by Solid Catalysts	21
1.9.8 Catalytic Beckmann Rearrangement	24
1.9.9 One- Step Beckmann Rearrangement	25
1.9.10 Other Methods	26
CHAPTER 2: RESULTS AND DISCUSSION	
Synthesizing of Xanthone Derivatives	32
Beckmann Rearrangement	46
CHAPTER 3: EXPERIMENTAL	57
REFERENCES	69
APPENDIX	86
ABSTRACT AND TITLE PAGE IN PERSIAN	

LIST OF TABLE

TABLE	PAGE
1.1 Beckmann Rearrangement with H ₂ SO ₄	27
1.2 Beckmann Rearrangement with PCl ₅	28
1.3 Beckmann Rearrangement with Various Catalysts	29
2.1 AMA Optimization Conditions	34
2.2 Preparation of Xanthones by Use of AMA	35
2.3 Reactions of Salcylic Acid with Phenoles	38
2.4 Optimum Condition for Preparation of Compd.(49)	39
2.5 Optimum Conditions by Use of γ-Resorcynic Acid with I	different
Molarity of Salcylic Acid	41
2.6 Synthesis of Some Xanthones	43
2.7 Beckmann Rearrangement of syn, anti-Benzaldoxime (51	,52)48
2.8 Optimum Conditions for Beckmann Rearrangement of	Benzo-
phenone in AMA	50
2.9 Beckamnn Rearrangement of Ketones and Aldehydes	51

LIST OF FIGURES

FIGURES	PAGE
riutu kra	IAGE

1. The ¹ H-NMR spectrum of 1-hydroxyxanthone (40)	86
2. The ¹ H-NMR spectrum of 1,3-dihydroxyxanthone (8)	87
3. The ¹ H-NMR spectrum of 1,3-dimethylxanthone (60)	88
4. The ¹ H-NMR spectrum of 1-hydroxy-3-methylxanthone (6	2)89
5. The ¹ H-NMR spectrum of 1,6-dihydroxyxanhtone (10)	90
6. The ¹ H-NMR spectrum of 3,4,8-trihydroxyxanthone (49)	91
7. The ¹ H-NMR spectrum of 1,8-dihydroxy-3-methylxanthor	ıe(63) 92
8. The ¹ H-NMr spectrum of 1,8-dihydroxyxanthone (50)	93
9. The 1H-NMR spectrum of 1,3-dihydroxy-2/-chlorobenzop	henone
(41)	94
10. The ¹ H-NMR spectrum of 1,3-dihydroxy-2'-flourobenzop	henone
(43)	95
11. The 1H-NMR spectrum of ester (45)	96
12. The 1H-NMR spectrum of compound (46)	97
13. The IR spectrum of 1-hydroxyxanthone (40)	98
14. The IR spectrum of 1,3-dihydroxyxanthone (8)	99
15. The IR spectrum of 1,3-dimethylxanthone (60)	100
16. The IR spectrum of 3,4-dihydroxyxanthone (61)	101
17. The IR spectrum of 1-hydroxy-3-methylxanthone (62)	102

FIGURES PAGE

18.	The IR spectrum of 1,6-dihydroxyxanhtone (10)	103
19.	The IR spectrum of 3,4,8-trihydroxyxanthone (49)	104
20.	The IR spectrum of 1,8-dihydroxy-3-methylxanthone(63)	105
21.	The IR spectrum of 1,7-dihydroxyxanthone (9)	106
22.	The IR spectrum of 1,8-dihydroxyxanthone (50)	107
23.	The IR spectrum of 1,3-dihydroxy-2'-chlorobenzophenone	
	(41)	108
24.	The IR spectrum of compound (46)	109
2 5.	The UV spectrum of 1-hydroxyxanthone (40)	110
26.	The UV spectrum of 1,3-dihydroxyxanthone (8)	111
27.	The UV spectrum of 1,3-dimethylxanthone (60)	112
28.	The UV spectrum of 1-hydroxy-3-methylxanthone (62)	113
2 9.	The UV spectrum of 1,6-dihydroxyxanhtone (10)	114
30.	The UV spectrum of 3,4,8-trihydroxyxanthone (49)	115
31.	The UV spectrum of 1,7-dihydroxyxanthone (9)	116
32.	The UV spectrum of 1,8-dihydroxyxanthone (50)	.117
33.	The Mass spectrum of 1-hydroxyxanthone (40)	118
34.	The Mass spectrum of 1,3-dihydroxyxanthone (8)	119
35.	The Mass spectrum of 1,3-dimethylxanthone (60)	120
36.	The Mass spectrum of 3,4-dihydroxyxanthone (61)	121
37.	The Mass spectrum of 1-hydroxy-3-methylxanthone (62)	122
38.	The Mass spectrum of 1,6-dihydroxyxanhtone (10)	123
39.	The Mass spectrum of 3,4,8-trihydroxyxanthone (49)	124
40.	The Mass spectrum of 1,8-dihydroxy-3-methylxanthone (63)	125

41.	The Mass spectrum of 1,7-dihydroxyxanthone (9)	126
42.	The Mass spectrum of 1,8-dihydroxyxanthone (50)	127
43.	The Mass spectrum of compound (46)	128

ABBREVIATIONS

The following abbreviation are used in this thesis

AMA Alumina in Methanesulfonic Acid

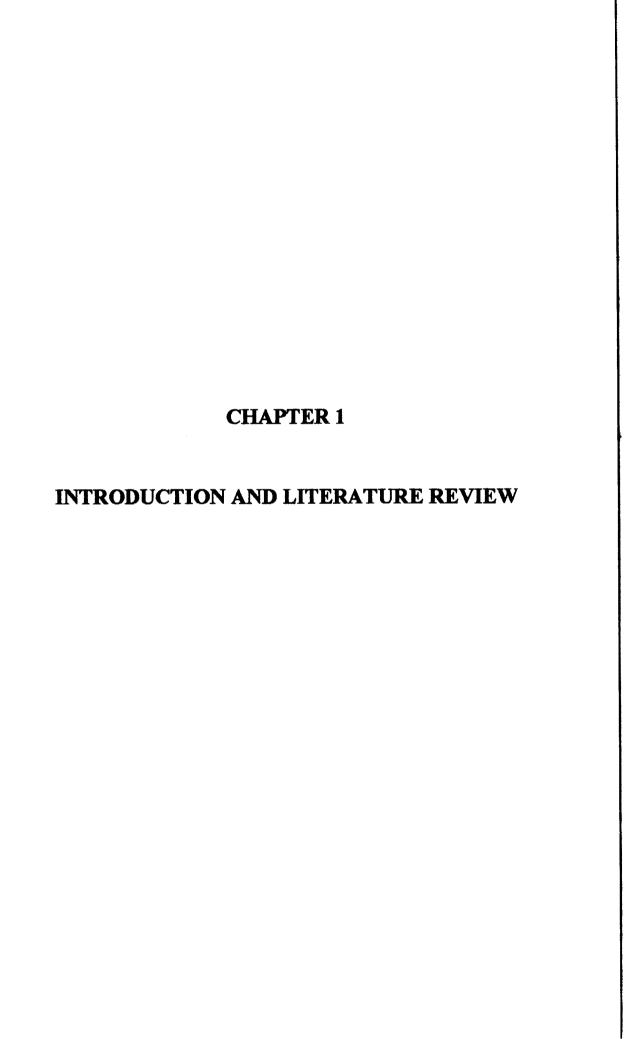
DDQ 2,3-Dicholoro-5,6-dicyclo 1,4-p-

benzoquinone

DMSO Dimethylsulfoxide

Et Ethyl

Me Methyl


Ph Phenyi

PPA Polyphosphoric acid

PPMA Polyphodphoric methanesulfonic

acid

TFAA Trifluoroacetic anhydride

Part A

Synthesis of Some Xanthones

1.1 Introduction

Xanthones are heterocyclic ketones related to γ -pyrone and chromones 1 , which are found in nature as glucosides and are produced as metabolic products by certain mold. The parent substance (1) does not occur in nature, but some of its oxygenated derivatives, have been isolated from a variety of natural sources.

1.2 Occurrence and Natural Distribution of Xanthones

Some of the naturally occurring xanthones have been isolated and characterized prior to 1960 ². A number of these xanthones occur in various parts of flowering plants ³⁻²¹ belonging to the Gentianaceae, Guttiferae and Anacardiaceae families; and some of them are metabolic products of members of the lower fungi ²²⁻²⁶, and also from Lichen ²⁷ origin and one, euthic acid²⁸, which is apparently produced by a detoxication mechanism, is found in the urine of animals which have been fed on Mango leaves.

1.3 Extraction, Purification and Recognition

Xanthones, which are found in various parts of plants or in the mycelia of moulds, are generally obtained by solvent extraction (Soxhelt Method) of the dried and disintegrated material (Pinselic acid and Pinselin are extracted from an aqueous substrate on which the mould has been grown). The crude material may be purified by recrystallization, but a prior purification by chromatography ^{22,25} is sometimes desirable.

A significant feature common to all the naturally occurring xanthone is the occurrence of a hydroxyl group in the (1 or equivalent 8)-position. They are yellow in color, the majority of them give a green color with ferric choloride in ethanolic solution. Some hydroxyxanthones (Gentisin 10-11, Isogentisin 12-13, Corymbiferin 3, and created by Jacareubin 14-15) give positive reactions in the color test (with magnesium and hydrochloric acid) for flavonoid compounds²⁹.

1.4 Biological Properties of Xanthones

Naturally occurring xanthones have unknown function in the metabolism of the living material in which they occur. Therefore, they may be produced merely as metabolic waste products.

It has been claimed that mangosteen ³⁰ hulls have febrifuge properties, and for the treatment of dysentery diseases the hulls and the bark (both of which contain mangostin) have been used.

The bikaverin (2), a red pigment, has high vacuolation ³¹, specific anti protozoal ³², and antitumor ³³ activities.

Moreover, 1,4-dihydroxyxanthone (3) is encountered in naturally occurring compounds and constitutes a major part of the bikaverin ^{34,35}.

Xanthones, and specially hydroxyxanthones, have long been known to produce pharmacological and biological effects ³⁶, although few examples of compounds having the general tetracyclic carbon skeleton of compound (4) are known.

Heteroanthracyclines, such as, 4-demethoxy-xanthodaunamycin³⁷ (5), and 4-dimethoxy-7-epixanthodaunomycine ³⁸ (6) prepared by Wong et al.³⁹, clarified the origin of cardiotoxicity and cytotoxicity of anthracyclines.