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Abstract

The central homological notions of commutative algebra are the classical homolog-
ical dimensions. These have been proved to be important invariants for modules and
complexes of modules over commutative (noetherian) rings. This thesis deals with
the refinements of these invariants, the Gorenstein dimensions. It contains some new
results on Gorenstein dimensions, as generalizations of some of the well-known results
on classical homological dimensions. Our results have two features, they present re-
lations between the Gorenstein dimensions and the grade of modules and complexes,

and, they treat the Gorenstein dimensions under base change.
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Preface

The first serious attempt to use homological methods in commutative algebra was by Arthur
Cayley in elimination theory, in 1848. But the homological methods have found their way
in the subject and have become a very important tool in commutative algebra since the
mid 1950’s.

The Gorenstein dimensions which are studied in this manuscript, are refinements of
the central notions in the classical homological algebra, namely, the projective dimension,
the injective dimension and the flat dimension.

This thesis is organized in five sections. In the first section, the background and the
basic definitions and results of the theory are presented. The reader who is familiar with
the theory of Gorenstein dimensions, can easily skip this section. The only exception is an
outline of the main results of the whole thesis in the first section. These are distinguished
by underlining.

Other sections contain some new results on Gorenstein dimensions. In sections 2,3
and 4, some relations between the Gorenstein dimensions and the grade of modules and
comi)lexes of modules are studied. Section 2 is based on [36] and studies the Cohen-
Macaulayness of tensor products. In section 3 we have generalized the results of [46] to
complexes of modules. The results of this section can be considered as the generalizations
of some well-known results on perfect modules. In section 3, a generalized definition of
the grade of a module is given. The basis of this section is [47]. Furthermore some new
results on Gorenstein flat dimensions are presented.

The core of this manuscript is the fifth section, where some generalizations of the so-
called change of ring results to Gorenstein dimensions are studied. The main results of this

section deal with the relations between Gorenstein dimensions of complexes of modules




over different base rings. Some of the results of this section have appeared in [37].
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1 Introduction

In this section we fix the notations for the other parts of the manuscript. The main
purpose of this section is to give a review of the background and the bases of the theory
of the Gorenstein dimensions. For details and proofs of the results, we have usually given
" references to recent text books in the subject. Furthermore we have pointed out the papers

where the theorems have originally appeared.

1.1 Notation and Terminology

In this thesis, all rings are assumed to be non-trivial and commutative. A ring R is said
to be local if it is noetherian with a unique maximal ideal. We say that the R-module M
is finite if it is a finitely generated R-module. Any unreferenced material in this section

can be found in [25] or [12].

Definition 1.1.1 Let R be a ring. An R-complex X is a sequence of R-modules X; and

R-homomorphisms 85, £ € Z,
% o Of
X=...— Xy —Xg— Xpq — ...

such that 8}655_1 =0 for all £ € Z. X, and 8} are called the module in degree £ and
the £-th differential of X, respectively. An R-module M is considered as the complex
0 — M — 0 with M in degree 0.

For an R-complex X and an integer £, the following notations are used.
7xX = Ker@f

BzX = Imaﬁ_l

CX = Cokeré‘jfH




It is clear that Bf C Zg". The residue class module
Hy(X) = 27 /By

is called the homology module in degree £. The homology complex is the R-complez H(X)

which has Hy(X) as the module in degree £ and zero differentials in all degrees.

Definition 1.1.2 A morphism o : X — Y of R-complezes is a family o = (oy)pez of
R-homomorphism ap: Xy — Y; satisfying 5‘2’0@—04@“185( =0, for all £ € Z. A morphism
a: X —Y is said to be a quasi-isomorphism if it induces an isomorphism in homology.
Quasi-isomorphisms are indicated by the symbol ~ above their arrows.

Two R-complezes X and Y are said to be equivalent, X ~Y', if and only if there ezists

an R-complex Z and two quasi-isomorphisms X = Z &Y.

Definition 1.1.3 The supremum, the infimum, and the amplitude of an R-complez X
are defined as

sup X = sup{{ € Z| H,(X) # 0},

inf X = inf{¢ € Z| Hy(X) # 0},

amppX =sup X —inf X.
X is said to be homologically trivial if H(X) = 0; for such complezes inf X = 400 and

sup X = —o0, by convention.

Definition 1.1.4 The notation C(R) denotes the category of all R-complezes and all mor-
phisms of R-complezes.

The full subcategories C=(R),Co(R), Co(R), and Co(R) consist of all R-complezes X
with Hp(X) = 0 for £ > 0, £ K 0, |4 > 0 and £ # 0, respectively. The full subcate-
gories Cry(R),C(=y(R), Cmy(R) consist of all R-complezes X such that H(X) belongs to
C-(R),C=(R), Ca(R), respectively.

We also consider the following full subcategories of C{R).




CUY(R) : Complezesof finite homology modules;
CP(R) : Complezesof projectivemodules;
CI(R) : Complexzesof injective modules;

CF(R) :Complezesof flat modules;

CL(R) :Complezesof finite free modules.

Superscripts and subscripts are freely mixed to produce new notations.

Definition 1.1.5 The notations RHomg(—, —) and — ®% — are used for, respectively,
the right derived functor of the homomorphism functor and the left derived functor of the

tensor product functor of R-complezes.

Definition 1.1.6 The subcategories P(R),Z(R), and F(R) are defined as follows.

X eP(R) & 3IPeCh(R): X ~ P;
X €I(R) & 3 € CL(R) : X =
X € F(R) & IF€CE(R): X = F.
The projective dimension, injective dimension and flat dimension of X € C(m) (R) is
defined as
pdpX = inf{sup{f € Z| P, # 0}| X = P € CE(R)},
idpX = inf{sup{f € Z| I, #0}| X ~ I € CL(R)}and
fdpX = inf{sup |£ € Z| Fy # 0}| X =~ F € C5(R)}.
Theorem 1.1.7 For X € P(R), Y € Z(R), and Z € F(R), the following equalities hold.

| pdpX = sup{inf U — inf(RHompg(X,U))|U € Cimy(R) AU # 0}
| = sup{— inf(RHompg(X,T))| T € Co(R)}
idrY = sup{—supU — inf(RHomg(U,Y))|U € C(my(R) AU # 0}
= sup{— inf(RHompg (T, Y))| T € Co(R) cyclic}
fdrZ = sup{sup(U ®% Z) ~supU|U € Cmy(R) AU # 0}
= sup{sup(T ®% Z)| T € Co(R) cyclic}




Theorem 1.1.8 Let R and S be Q-algebras. Then there are identities of equivalence
classes of Q-complexes, as follows.
Commutativity. If X € C(5)(R) and Y € C(R), then

Xeky =Y ek X

Associativity. If X € C)(R),Y € C(R,S) and Z € C()(S), then

(X @k Y) ek Z = X ok (v 0% 2).

Adjointness. If X € C(y(R),Y € C(R,S) and Z € C(r)(S5), then.

RHomg(X ®% Y, Z) = RHompg(X, RHomg(Y; Z)).

Tensor Evaluation. If R is a notherian ring and X € C((é)) (R), Y € Coy(R, S) and

Z € C(5)(S), then
RHompz(X,Y) ®% Z = RHomg(X,Y ®% Z2),
provided that X € PY)(R) or Z € F(S).
Hom Evaluation. If R is a noetherian ring and X € C((g)) (R), Y € C)(R, S), and
Z € Cy(S), then
X ®% RHomg(Y, Z) = RHomg(RHomg(X,Y), Z),
provided that X € PUN(R) or Z € Z(S).

Definition 1.1.9 Let a be an ideal of R and a = ay,...,a; be a finite set of generators

for a, then a-depth of X € C(R) is defined to be the number

depthp(a, X) =t — sup(K(a) ®r X).

(cf. [33])




Recall that the Koszul complex on an element z € R is the complex
K(z) =0 —R - R—0

concentrated in degrees 1 and 0. For a sequence x = z1,...,Z, of elements of R the

Koszul complex K(x) = K(z1,...,2y) is the tensor product K(z1) ®r ... ®r K(zp).

Definition 1.1.10 For X € C()(R) and Y € C(ry(R), the grade of X and Y is defined
as follows.

gradep(X,Y) = — sup(RHompg(X,Y))
(cf. [46])

Definition 1.1.11 If (R,m, k) is a local ring and X € C()(R), then the depth of X is
defined as
depthp X = depthgp(m, X) = gradeg(k, X).

It X € CY)(R) and ¥ € C(c)(R), then

gradep(X,Y) = inf{depthp ¥; + inf Xy|p € SpecR}.
It is proved ([14]) that if X € C()(R), then
depthp(a, X) = gradeg(R/a, X).

Definition 1.1.12 Let R be a noetherian ring. The (Krull) dimension of X € C(m)(R) is
defined as
dimpX = sup{dim(R/p) — inf X,|p € SpecR}.

Definition 1.1.13 If R is a local ring, then the Cohen-Macaulay defect of a homologically
bounded complex X with finite depth is defined as

cmdrpX = dimpX — depthpX.
The complex X € C((é)) (R) 1is said to be Cohen-Macaulay if cmdgpX = 0.

9




Definition 1.1.14 Let R be a local ring. An R-complex D is a dualizing complex for R
if D belongs to T (R) and the natural morphism R —s RHompg(D, D) is invertible.

It is well-known that the equality cmd R = amp D always holds.
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1.2 Auslander’s G-dimension

The projective dimension has proved to be a very important invariant for modules over
commutative noetherian rings. Recalling the next two classical results, both proved in
1950’s, will suffice to illustrate this importance. The first theorem is due to Auslander

and Buchsbaum [4] and Serre [42] (cf. [10], 2.2.7).

Theorem 1.2.1 Let (R,m, k) be a commutative noetherian local ring. The following are

equivalent.
(i) R is regular (R has finite global dimension).
(it) pdpk < co.

(111) pdpM < oo for all finite R-modules M.

(iv) pdrM < oo for all R-modules M.

The second result was also proved by Auslander and Buchsbaum [6] and is well-known as

Auslander-Buchsbaum formula (cf. [10], 1.3.3).

Theorem 1.2.2 Let M be a finite module over a commutative noetherian local ring R. If

M has finite projective dimension, then
pdrM = depth R — depthp M.

The Gorenstein dimension of a finite module M over a commutative noetherian ring R,
G-dimr M, was introduced in 1967 by Auslander [2]. This relative homological dimension
is a finer invariant than projective dimension in the sense that there is always an inequality
G-dimpM < pdrM and equality holds when pdzM is finite. Furthermore, Gorenstein

dimension shares many of the nice properties of projective dimension. Some of these
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properties will be stated in this thesis. But first let us review the definitions and basic

properties.

Convention. In the rest of this section, R is a commutative noetherian ring.

Definition 1.2.3 A non-zero finite R-module M belongs to the G-class of R, G(R), if
and only if

(i) Exth(M,R) =0 for i >0,
(i1) Extl(Homp(M,R),R) =0 for i >0, and
(i) The canonical map M — Hompg(Hompg(M, R), R) is an isomorphism.

Modules in G(R) are also called modules of G-dimension zero.
Now a G-resolution for a finite R-module can be constructed using modules in the

G-class.

Definition 1.2.4 A G-resolution of a finite R-module M is a sequence of modules in
G(R),

. — GGy —...— G — Gy —0

which is ezact in Gy for £> 0 and has Go/Im(G; — Go) = M.
The resolution is said to be of length n if Gp # 0 and Gy, =0 for £ > n.

Remark 1.2.5 It is clear that every finite free R-module is in G(R) and it is easy to
prove that every finite projective R-module is in G(R), too. Thus every finite module has

a G-resolution.

Definition 1.2.6 Let M be a non-zero finite R-module. For n € Ny we say that M has
G-dimension at most n, and we write G-dimpM < n, if and only if M has a G-resolution

of length n. If M does not have any G-resolution of finite length, then we say that 1t
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has infinite G-dimension and write G-dimpM = oco. The G-dimension of zero module is

defined to be —oo.

Auslander has proved [2] that G-dimension of a finite module can be computed in terms

of the vanishing of the Ext functors.

Theorem 1.2.7 ([12], 1.2.7) Let M be a finite R-module of finite G-dimension. Then
G-dimpM = sup{i| Ext’ (M, R) # 0}.

At the beginning of this section, we pointed out to some important theorems about
projective dimension (2.1 and 2.2). The next two theorems, due to Auslander and Bridger

[3], show that the Gorenstein dimension has also similar properties.

Theorem 1.2.8 ([12], 1.4.9) Let (R,m,k) be a local ring. Then the following are equiv-

alent.
(i) R is Gorenstein (R has finite self-injective dimension,).
(1) G-dimpk < oco.

(iii) G-dimpM < oo for all finite R-modules M.

Note that this theorem is analogous to the theorem 1.2.1, but since the Gorenstein dimen-
sion is only defined for finite modules, the analogy is not complete. This will be made up

in the next section.

Theorem 1.2.9 ([12], 1.4.8) Let M be a finite module over a local ring R. If M has

finite G-dimension, then

G-dimrM = depthR — depthp M.
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