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ABSTRACT

CS RINGS AND NAKAYAMA PERMUTATION

BY

MOHAMMAD ALI ABEDI

In chapter I we state basic definitions, theorems and lemmas that
are necessary in the other chapters.

In chapter I we define Kasch rings and continuous rings and prove
some results of mininjective rings. And we show that if R is a semiper-
fect left continuous ring with essential left socle, then R admits a
Nakayama permutation of its basic set of primitive idempotents.

In chapet III we show that a ring R is left C'S and the dual of
every simple right R-module is simple if and only if R is semiperfect
left continuous with SocgR = SocRp ‘E r . Moreover in this case R
is also left Kasch and admits a Nakayama permutation of its basic set
of primitive idempotents. We also characterize left PJF' rings and we
show that a ring R is quasi-Frobenius if and only if R is right Kasch
and pR™ is C8.

In chapter IV we provide some examples that satisfy or do not satisfy

in some concepts of previous chapters.
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CHAPTER 1
BASIC DEFINITIONS AND RESULTS

Throughout this dissertation R will denote an associative ring with
unity and all modules are unitary R-modules. We write A C B(A C
B) to mean A is a (proper) submodule of B. The notation A eés B
and C C® D will mean A is an essential submodule of B and C is
a direct summand of D. If Mg is a right R-module, we will denote
by J(M), Z(M), Soc(M) and E(M) the Jacobson radical, the singular
submodule, the socle and the injective hull of M, respectively. The left
(respectively right) annihilator of a subset X of R is denoted by £(X)

(respectively, (X)) and is denoted by
anng(z) = ¢(z) = {r € R|rz =0, Vo € X}.

(ann,(z) =r(z) = {r € R| zr =0, Vz € X}).
We will write M*) and M* to indicate the direct sum of k-copies of M
and the direct product of k-copics of M, respectively. We will indicate

by M}, = Hompg(Mpg, Rg) the dual of right R-module M.

1.1. Essential and Superfluous Submodules

Definition 1.1.1. Let M be a module. A submodule K of M is
essential (or large) in M, abbreviated K eCji_s M, in case for every non-

zero submodule L of M, K N L # 0; equivalently for every submodule




KNL=0 implies L =0.

Dually, a submodule K of M is superfluous (or small) in M, abbre-

viated
K< M,

in case for every submodule L of M,
K+ L=M implies L=M.

Example 1. Every non-trivial submodule of Z,= is both essential and

small as a Z-module.

Proposition 1.1.2. Let M be a module with submodules K C N C M
and H C M. Then

() KC Mifand only if KC N and N © M.

(i) HNK C M if and only if # © M and K C M.
Proof. (i) Let K E M and suppose 0 # L C M, then LN K # 0. In
particular this is true if L C N, so K e(f N. Since0O#LNKCLNN
so LN N # 0 and hence N eés M. Conversely, suppose K cés N eéa M
and 0 # L C M, then LN N £ 0 and hence KN LN N # 0, since
K C N. Thus KN L #0.

(i) One implication follows at once from (i). For the other, suppose
HCMand KCM. U LCMand LAHNK —0, then LN H =0

because K eés M. Whence L = 0 because IT eés M.

Lemma 1.1.3. A submodule g/ C gM is essential in M if and only

if for each 0 # £ € R M there exists an r € R such that 0 # rz ¢ K.




Proof. (=) IfKe&_sMandO#’zEM, then Rz N K # 0.

(<=) If the condition holds and 0 # = € L, C M, then thereis anr € R

such that 0 # rz € KN L. Thus Ke(s_i’ M.

Proposition 1.1.4. Suppose that K, C M; C M, K C My C M and
M = M; & M,, then:

(i) K1 ® K, € My @ M, if and only if K; © M, and K, & M,.

(ii) K1 ® K, < M, @ M, if and only if K, < M, and Ky, < M,.

Proof. See (1, Proposition 5.20].

Proposition 1.1.5. Let K, M and N be R-modules. If K eés M, then
KeNCMoN.

Proof. Let m+n e M®N. Since K eg“ M by Lemma 1.1.3 there exists
anr € Rsuchthat 0 # rm € K. Thus 0 # rm+trn = r(m+n) € KON

and hence K & N ef M ©® N by Lemma 1.1.3.

Proposition 1.1.6. Let R be a ring and a € R. If K is a small left
ideal of R, then Ka < Ra.
Proof. Suppose Ka + L = Ra for some left ideal L of Ra. Let I) —
{r € Rl ra € L}. Then L' is a left ideal of R and L'a C L. I =
Ra—-Ka=(R-K)a. Thus R— KC L' andso R =K + I'.
Since K < R, I' = R and hence I = I'a = Ra. Hence Ka < Ra.

Let M be a module and K C N C M. N is called an essential

extension of K in M if K eés N.

Definition 1.1.7. A submodule N of a module M is called closed if




N has no proper essential extension in M.

Remark. By Zorn’s Lemma each submodule of the module M is con-

tained essentially in a closed submodule of M.

Definition 1.1.8. If M is a left R-module, then

SocM = ) {K C M| Kis minimal in M}

= N{L C M| L is essential in M}

Proposition 1.1.9. Let M be a module and K C M. Then SocK =

KnSocM C SocM. In particular,

Proof. See [1, Corollary 9.9).

Corollary 1.1.10. Let M be a left R-module. Then SocM cés M if and
only if every non-zero submodule of M contains a minimal submodule.
Proof. SocM e(f M if and only if SocM N L # 0 for every non-zero
submodule L of M. This implies if and only if Socl # 0, by Proposition
1.1.9. And SocL # 0 if and only if L, contains a minimal submodule.
Let N be a submodule of M, N is homogeneous (or homogeneous
component of SocM) in case for every simple submodule K of N, if

K=K CM,then K' CN.
Definition 1.1.11. If M is a left -module, then

RadM = n{K C M| K is maximal in M}

= Z{LC M| L is small in M}




We will denote the Jacobson radical of a ring R by J = J(R) = RadgpR.

Proposition 1.1.12. If (M,)ac4 is an indexed set of submodules of M
with M = ®,M,, then SocM = ®,S0cM, and RadM = ®4RadM,,.

Proof. See [1, Proposition 9.19].

Corollary 1.1.13. If M is semisimple, then RadM = 0.

Proof. Since M is semisimple we can write M = @4P, where every

P, is simple, and since RadP, = 0 we have RadM = @4 4RadP, = 0.
An element z € R is left (right) quasi-regular in case 1 — z has a

left (right) inverse in R.

Proposition 1.1.14. Let J = J(R) be the Jacobson radical of R.
Then z € J if and only if z is left (or right) quasi-regular.

Proof. See [1, Theorem 15.3|.

Proposition 1.1.15. If I is a left ideal of R and Rad(%) = 0, then
J(R)C I.

Proof. If c g I thenz+1 =2 #0,50 T ¢ Rad(!;). ence there exists
a maximal left ideal M of R with I C M and z ¢ ¥. So z ¢ M, and

hence z ¢ J(R). Whence J C I.

1.2. Projective and Injective Modules

Definition 1.2.1. Let pU and zK be modules. If M is a module,
then U is M-injective (or U is injective relative to M) in case for each

monomorphism f : K — M and homomorphism ¢ : K — U, there

[}




is an R-homomorphism § : M — U such that the following diagram

commutes.

On the other hand, U is M-projective (or U is projective relative to M)
in case for cach epimorphism o : M -— N and cach homomorphism
g: U — N, for every left R-module N, there is an f2-homomorphism

g : U — M such that the following diagram commutes.

gij\g

M- N —0

A module P is said to be projective in case it is M-projective for every
module M. And a module F is injective in case it is M-injective for

every module M.

Proposition 1.2.2. Let U and M be R-modules. U is M-injective il

and only if every R-homomorphism {rom a submodule of M into U can
be extended to M.

Proof. It is clear.

Lemma 1.2.3. [The Injective Test Lemmal). The (ollowing statements
about a left R-module E are equivalent:

(i) E is injective;




(ii) E is injective relative to R;
(i1i) For every left ideal I C gR and every R-homomorphism h :

I — E there exists an £ € E, such that A is right multiplication by z
h(a) = az, Va € 1.
Proof. See [1, Lemma 18.3].

Examples. @ is an injective Z-module. On the other hand, Z is not
an injective Z-module, since the homomorphism f : 2Z — ¥ given by

the rule f(2n) = n can not be extended to a homomorphism from Z to

Z.

Definition 1.2.4. An R-module F is free if it is isomorphic to a direct

sum of copies of the left R-module R.

Proposition 1.2.5. A left R-module P is projective if and only if it is
isomorphic to a direct summand of a free left R-module.

Proof. See [1, Proposition 17.2].

Lemma 1.2.6. Let M be a left R-module. If M is finitely generated
and R-projective, then M is projective.

Proof. See [1, Corollary 16.14].

Proposition 1.2.7. P is projective if and only if every short exact
sequence 0 — N — M — P — 0 splits {(i.e. M = N & P).

Proof. See [1, Proposition 17.2].

Proposition 1.2.8. Every module is an epimorphic image of a projec-

tive module.

e




Proof. By Proposition 1.2.5 every free module is projective and every
module is generated by rR so every module is an epimorphic image of

a free module and so it is an epimorphic image of a projective module.

Proposition 1.2.9. Every left R-module can be embedded in an in-
jective left R-module.

Proof. See [1, Proposition 18.6].

Proposition 1.2.10. Let (M,)c4 be an indexed set of left R-modules.
Then

(i) ®aM, is projective if and only if cach M, is projective;

(ii) [Ty M, is injective if and only if each M, is injective.
Proof. See [1, Corollary 16.11].
Recall that a pair (E,1) is called injective hull (or injective envelope)
of M if E is an injective left R-module and

0— M- K

€38
is an essential monomorphism (img ¢ C E).

Proposition 1.2.11. Every module M has the injective hull, which is

unique minimal injective extension and maximal essential extension of

M.
Proof. See (1, Proposition ...]

Recall that the injective hull of M is denoted by E(M).

Proposition 1.2.12. In the category of left R-modules over a ring R.

(i) M is injective if and only if M = E(M);

e




(i) f M C N, then E(M) = E(N);

(ili) If M C Q, with Q injective, then Q = E(M) & E';

(iv) If @4 E (M, ) is injective (for instance, il A is finite) then E(®sM,) =

GAE(M,).

Proof. Part (i) is immediate from the definition of the injective hull.
For (i) since N 'C E(N), if M C N, then M C E(N) by Propo-
sition 1.1.2 part (i). Since E(M) is 2 maximal essential extension of
M, E(N) C E(M) and since I(N) is injective and E(M) is minimal
injective extension of M, E(M) C [J(M). Thus E(M) — E(N) for the

proof of (iii) and (iv) see {1, Proposition 18.12].

Proposition 1.2.13. For a ring R the following are equivalent:
(i) Every direct sum of injective left R-modules is injective;

(i) If (M4)aea is an index set of left R-modules, then
E(®aM.) = ©aE(M,)

(iii) R is a left noetherian ring.

Proof. See [1, Proposition 18.13|

Example. E(Z) = Q and FF(Q) = Q. Since Q is an injective Z-module
and Z C Q by Proposition 1.1.12 part (iii) Q = E(Z) @ E'. But Q is

indecompossible and E(Z) # 0so F' =0 and E(Z) = Q.

Definition 1.2.14. A ring R is called left self-injective if g R is injec-

tive.

Proposition 1.2.15. For a left self-injective ring R the following codi-




tion are equivalent:
(i) left Noetherian;
(ii) right Noetherian;
(iii) left Artinian;
(iv) right Artinian.
In this case R is right self-injective.

Proof. See [5, p.182].

Examples. If B = Zg, then every R-homomorphism from an ideal of
R into R can be extended to an I-homomorphism from R into E. Thus
by Proposition 1.2.2 and Lemma 1.2.3 R is left and right self-injective.

And Z is not self-injective since it is noetherian but is not artinian.

Definition 1.2.16. A ring R is called right mininjective if every R-
homomorphism from a minimal right ideal of R into R is given by left
multiplication by an element of R; equivalently for each minimal right
ideal K of R, every homomorphism f : K — R extends to R.

Note that every self-injective ring is mininjective, and every polynomial
ring R[z] is mininjective, because it has no minimal ideal.

A ring R is called right (left) principally injective (or has right
(left) principal extension property (P.E.P)) if every R-homomorphism
from a principal right (left) ideal of R into R can be extended to an
endomorphism of R.

Remark. Every principally injective ring is mininjective.
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