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Abstract

since 1950, frames have been a useful and important tool in signal processing, image

processing, data compression, sampling theory, etc. In recent years, C∗-algebra theory

and operator theory are being introduced to the study of frames and producing deep

results in frame theory.

The main purpose of this dissertation is to study generalized frames and frames

with vector valued bounds. Since the values of g-frames are operators, we are con-

cerned with the composition of g-frames. We present the necessary and sufficient

conditions for an operator to induce a g-frame consisting of a single term. Moreover,

necessary and sufficient conditions are given for an operator to have the g-frame-

preserving property. The dual of g-frames in Hilbert C∗-modules are also character-

ized.

Another purpose of the dissertation is to study a new version of frames in Hilbert

C∗-modules. We introduce frames in Hilbert C∗-modules that have frame bounds in

a C∗-algebra. Such a sequence is said to be a ∗-frame. We consider basic properties

of ∗-frames. In some examples, the C∗-valued bounds and real-valued bounds for a

sequence are compared. Also, we prove analogous results for ∗-frames and frames. We

see that every frame in a Hilbert C∗-module is a ∗-frame and every ∗-frame has real-

valued bounds. Then we obtain that ∗-frames are frames with different bounds. We

also study the so-called ”full Hilbert C∗-modules” whose properties may be interest

to some readers.
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Introduction

Frames were first introduced in 1952 by Duffin-Schaeffer [17]. They abstracted the

fundamental notion of Gabor [21] to study signal processing. It seems, however, that

Duffin-Schaeffer ideas did not attract much interest outside the realm of nonharmonic

Fourier series until the paper by Daubechies-Grassman-Mayer [16] was published in

1986.

The theory of frames has been rapidly generalized in form of the elements of frame

and the space that the elements are chosen from it.

First, frames introduced in Hilbert spaces and studied in several parts; for ex-

ample, frames of translate, Gabor frames (Weyl-Heisenberg frames), wavelet frames,

frame multiresolution analysis, etc. [6, 7, 23, 24, 40]. Each of these classes is im-

portant and useful in a certain branch of science: Mathematic, dynamical systems,

etc..

Also, frames in Hilbert spaces have been extended to frames in Banach spaces

whose properties are specified accordingly [10, 15].

As the theory extends, the values of the frames have been changing. Generalized

frames were originally introduced as sequences of bounded linear operators on Hilbert

spaces [42]. Moreover, the elements of frames were changed as subspaces of Hilbert

1
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spaces and the definition of frame was presented for this sequence. This version of

frame was called to be a fusion frame [12]. Properties of generalized frames and fusion

frames have been considered by some researchers [35, 36, 43, 46].

It is well known that the theory of Hilbert C∗-modules has applications in the

study of locally compact quantum groups, complete maps between C∗-algebras, non-

commutative geometry, and KK-theory. There are many differences between Hilbert

C∗-modules and Hilbert spaces. It is expected that problems about frames for Hilbert

C∗-modules to be more complicated than those for Hilbert spaces. This makes the

study of the frames for Hilbert C∗-modules important and interesting. So, frames in

Hilbert spaces have been extended to frames in Hilbert C∗-modules [19]. In this case,

the study of frames was not easily done because there were need to compare elements

of C∗-algebra. However, an the equivalent definition presented in [25] paved the road

for an easier access to frames in Hilbert C∗-modules than it was before. Frames,

g-frames and fusion frames have been considered in Hilbert C∗-modules [4, 20, 22,

29, 30, 44].

As we saw in the above paragraphs, frames have undergone different extensions.

Usually, the frame bounds were defined to be real-valued. Now, one may raise the

following question: can one modify the definition such that the frame bounds to be

objects other than nonnegative numbers?

In this thesis, we answer the question and introduce a version of frame in Hilbert

C∗-modules with vector valued bounds. It means that we introduced a frame with

frame bounds in a C∗-algebra. It is interesting that some elementary properties of

frames are given for this sequence but the study of this type of frames is difficult

because we use the relation between elements of a C∗-algebra and the equivalent
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definition [25] is no longer valid here.

The body of the thesis is divided into three chapters. The first chapter contains

the basic tools that we need for the consequent chapters. The section 1.1 introduces

some basic definitions of C∗-algebras. For studying frame theory in Hilbert C∗-

modules, we need a partial ordering relation between elements of a C∗-algebra.To

fulfill this, we recall the relation ” ≤ ” on a C∗-algebra and useful theorems such as

Gelfand theorem, Spectral Mapping theorem, and Continuous Functional Calculus.

The section also studies the tensor product of C∗-algebras that is also a C∗-algebra,

and some properties of the new C∗-algebra.

In the second section of Chapter 1, some basic definitions and examples of Hilbert

C∗-modules are introduced. It presents some identities and properties of such spaces.

The definition of adjointable and bounded A-module maps in Hilbert C∗-modules are

given and further illustrated by certain examples. Also, we study certain properties

of TT ∗ and T ∗T associated to a given operator T , and find exact values for bounds

of them with respect to A-valued inner products. In the continuation, the tensor

product of Hilbert C∗-modules and the tensor product of operators are explained.

There exist many differences between Hilbert spaces and Hilbert C∗-modules. This

section also states some differences that are needed. The relation between adjointable

maps and bounded A-module maps in Hilbert C∗-modules is compared with Hilbert

case by a given example. Moreover in this section, we explained by an example that

the Risze representation theorem is not valid in Hilbert C∗-modules. Types of Hilbert

C∗-modules are introduced for example full and self-dual Hilbert C∗-modules. At the

end of section, we present C∗-algebra A as a Hilbert A-module and we get interesting

results about it in the next parts.
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Section 1.3 contains the definition of Bessel sequences, frames and some exam-

ples of them in Hilbert spaces. The operators corresponding to a given frame and

properties of them are given. This section recalls the conditions that provides frame-

preserving operator for a given operator, definition of dual frames and characterization

of them.

In Section 1.4, we introduce frames in Hilbert C∗-modules. The theorems of Frank-

Larson are presented that they explained for every finitely or countably generated

Hilbert C∗-module there exists a frame and considered relations between frames in

two Hilbert C∗-modules with different A-valued inner products.

The g-Bessel sequences, g-frames and their duals, and g-orthonormal basis for

Hilbert spaces are introduced in Section 1.5. Corresponding operators to a given

g-frame are explained.

For more studying of g-frames in Hilbert spaces and Hilbert C∗-modules, we

present Chapter 2 in three sections. Section 2.1 considers composition of the ele-

ments of two g-Bessel sequences and composition of the elements of two g-frames

in Hilbert spaces. Also, we characterize g-frames by using g-orthonormal basis in

Hilbert spaces.

The g-Bessel sequences, g-frames and their types, and g-Riesz bases for Hilbert

C∗-modules are introduces in Section 2.2. In a proposition , the relation between

frames and g-frames in Hilbert A-module A is considered. We find a necessary and

sufficient condition for an operator T such that {T} is a g-frame. Also, the section

recalls operators corresponding to a given g-frame and their properties. The relation

between an adjointable operators θ from H into ⊕j∈JKj and g-Bessel sequences is

obtained. Moreover, we modify the proof of Theorem 3.5 of [30] reveals that the
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bijectivity condition on T can be relaxed to the surjectivity of T and that the converse

of the theorem remains true. At the end of Section 2.2, The family of g-frames is

given associated to a g-frame by using its g-frame operator.

In the last section of Chapter 2, we characterize dual of g-frames and introduce

types of them in Hilbert C∗-modules. The given results in this section are valid for

g-frames in Hilbert spaces because of Hilbert spaces are Hilbert C∗-modules over

C∗-algebra C.

Chapter 3 presents a new version of frames in Hilbert C∗-modules. This chapter

is organized in six sections. The frames with vector valued bounds, types of them

and some examples are in this section. It compares A-valued bounds and real valued

bounds by examples. The ∗-frames in special Hilbert C∗-module A are determined.

Section 3.2 considers properties of operators associated to a given ∗-frame. And,

by a theorem, it is shown that ∗-frames have real valued bounds and they can be

studied as frame with different bounds.

In Section 3.3, ∗-frames on a special collection of Hilbert C∗-algebras are studied.

When A is commutative, the given results in Section 3.1 and Section 3.2 are closed

to ordinary frames. In the continuation of this section, some results about ∗-frames

in Hilbert A-module A and a Hilbert C∗-module H are given.

We give a ∗-frame for Hilbert A-module A by a given ∗-frame in a Hilbert A-

module H and then we obtain a result about full Hilbert A-modules in Section 3.4.

By an example, we show that the given condition in the result is necessary but

is not sufficient. Moreover, ∗-frames for tensor product of Hilbert C∗-modules are

constructed by ∗-frames in each Hilbert C∗-modules. At the end of Section 3.4,
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the necessary and sufficient conditions are given for operators that have ∗-frame-

preserving property.

One of main results of this thesis is in Section 3.5. Frames in Hilbert A-modules

with different A-valued inner products are studied by Frank-Larson [20]. Since our

subject is to study of ∗-frames, we first extend the result [20] for ∗-frames in Sec-

tion 3.5. Then ∗-frames in Hilbert C∗-modules with same vector space and different

C∗-algebra are considered. Also, we obtain results about ∗-homomorphisms on C∗-

algebras and the necessary and sufficient condition about a map that determines the

relation between ∗-frames in Hilbert C∗-modules with different C∗-algebras. This

section characterizes ∗-frames in a Hilbert B-module with respect to a Hilbert A-

module. In the special case, ∗-frames in Hilbert B-module B are characterized with

respect to Hilbert A-module A.

In Section 3.6, we introduced dual ∗-frames and types of them. Also, the set of all

duals associated to a given ∗-frame is characterized. These facts are valid for frames

in Hilbert C∗-modules.



Chapter 1

Preliminaries

This chapter is intended to be as a memoir of some fundamental results in C∗-algebras,

Hilbert C∗-modules and frame theory that will be used in the rest of the thesis. Con-

sequently, we shall give no proofs as they can be found in all the standard textbooks

of the subject. We will only prove some properties that are not present or are as

exercises in text books.

1.1 C∗-algebras

The theory of C∗-algebras is an extension of the field of complex numbers. C∗-algebras

are very well-behaved. A C∗-algebra is an algebra with an additional algebraic op-

eration that this is called to be an involution. In this section, we study C∗-algebras

to cover the basic results for studying Hilbert C∗-modules. And, it contains some

properties of C∗-algebras that are necessary for studying the frame theory on Hilbert

C∗-modules in the reminder of the thesis. For comprehensive accounts, we refer the

interested readers to [5, 18, 26, 27, 34, 38, 41].

7
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Let’s begin with

Definition 1.1.1. A Banach algebra is an algebra A over the field of complex

numbers equipped with a norm with respect to which it is a Banach space and which

satisfies ‖ab‖ ≤ ‖a‖‖b‖ for all a, b ∈ A. A Banach algebra A is called unital if it

possesses a unit element or multiplicative identity. We denote the unit element of A

by 1A or 1. A ∗-algebra is a Banach algebra with an involution which is a map

a −→ a∗ from A to A that satisfies

(a+ b)∗ = a∗ + b∗, (λa)∗ = λa∗, (ab)∗ = b∗a∗, a∗∗ = a,

for all a, b ∈ A and all λ ∈ C. A Banach ∗-algebra that satisfies

‖a∗a‖ = ‖a‖2, ∀a ∈ A,

is called a C∗-algebra. A C∗-subalgebra of the C∗-algebra A is a vector space

which is closed with respect to the multiplication and the involution of A; every

C∗-subalgebra is itself a C∗-algebra. For every subset S of A, there is a smallest

C∗-subalgebra of A containing S that is called the C∗-algebra generated by S.

The following example contains some of the C∗-algebras that we need.

Example 1.1.1. 1. Let H be a Hilbert space. The set of all bounded linear op-

erators on H is denoted by L(H) which is a unital Banach algebra, with the

operator norm, and the map T −→ T ∗ is an involution that makes L(H) into a

C∗-algebra. (T ∗ is the adjoint of T .)

2. Let l∞ = l∞(N) be the space of all bounded complex-valued sequences that is a

unital C∗-algebra with the following operations. For u = {ui}i∈N and v = {vi}i∈N
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in l∞, define

uv = {uivi}i∈N, u∗ = {ui}i∈N, ‖u‖ = sup
i∈N
|ui|.

Definition 1.1.2. Let A be a unital Banach algebra and let a be an element in A.

Then a is invertible if there is an element b in A such that ab = ba = 1. The set of

all invertible elements in A is denoted by Inv(A). If a ∈ A, the spectrum of a is

σ(a) = {λ ∈ C : λ1− a is not in Inv(A)}.

Definition 1.1.3. Let A be a unital Banach algebra and a, b ∈ A. We say that a

commutes with b if ab = ba. The center of A is the set of all of elements of A such

that commute with all of elements of A; center of A={a ∈ A : ab = ba, ∀b ∈ A}. If

the center of A is A, then A is commutative.

The Gelfand-Mazure theorem determines the collection of Banach algebras as

follows.

Theorem 1.1.2. [18] (Gelfand-Mazure) If A is a Banach algebra in which every

nonzero element is invertible, then A ∼= C.

The following proposition includes some elementary facts about inverses and spec-

trum of elements in Banach ∗-algebras.

Proposition 1.1.3. [18] Let A be a unital Banach ∗-algebra.

i. 1∗ = 1.

ii. If a is invertible, then so is a∗, and (a∗)−1 = (a−1)∗.

iii. σ(a∗) = σ(a), for any a ∈ A.
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Definition 1.1.4. Let A be a unital Banach C∗-algebra and a ∈ A.

1. a is self-adjoint or hermitian if a = a∗.

2. a is said to be normal if aa∗ = a∗a.

3. a is positive if a is self-adjoint and σ(a) ⊆ R+. We write a ≥ 0 to mean that

a is positive.

4. a is strictly nonzero when a is nonzero and zero dosn’t belong to σ(a).

5. a is called to be strictly positive if a is strictly nonzero and positive.

The set of all of positive elements of A is denoted by A+ and it is known that

A+ is closed in A [34, P. 46]. Some properties and relations of positive elements of

A are illustrated as follows: Using Theorem 1.1.4, we can extend definition of ’|.|’.

The absolute value of a is defined by |a| := (a∗a)
1
2 for a ∈ A. For a, b ∈ A, we

write a ≤ b to mean b − a ∈ A+. The relation ’≤’ is translation-invariant, that is

a+ c ≤ b+ c for all c ∈ A, and defines a partial ordering on A.

Theorem 1.1.4. [34] If a is an arbitrary element of a C∗-algebra A, then a∗a is

positive. Also, the set A+ is equal to {a∗a : a ∈ A}.

Proposition 1.1.5. [41] Let (ak)k∈N be any sequence in a C∗-algebra A. Then the se-

quence (
∑n

k=1 aka
∗
k)n∈N is an increasing sequence of positive elements which is strongly

convergent in A′′ if supn‖
∑n

k=1 aka
∗
k‖ <∞, (A′′ is the double dual of A.). If the norm

of the tail of
∑

k∈N aka
∗
k tends to zero as n → ∞, then

∑
k∈N aka

∗
k is actually norm

convergent in A.
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Theorem 1.1.6. [5] Let A be a unital Banach C∗-algebra and a ∈ A+. Then there

exists a unique positive element b ∈ A+ such that b2 = a. Moreover, b commutes with

all the elements that commutes with a.

The unique element b is called square root of a and is denoted by
√
a or a

1
2 .

Theorem 1.1.7. [34] If a, b are positive elements in C∗-algebra A, then the inequality

a ≤ b implies that the inequality a
1
2 ≤ b

1
2 .

In this place, we can ask that is the converse of Theorem 1.1.7 true for every

C∗-algebra? Answer this question is that if C∗-algebra A is commutative, then we

have 0 ≤ a ≤ b implies that a2 ≤ b2 on A, [38, Proposition 1.3.9].

Proposition 1.1.8. [34] Let A be a C∗-algebra.

1. If a, b, c ∈ A and a ≤ b, then cac∗ ≤ cbc∗.

2. If a, b ∈ A and 0 ≤ a ≤ b, then ‖a‖ ≤ ‖b‖.

In the special case, if C∗-algebra A is unital, then the following relations are valid.

Proposition 1.1.9. Let A be a unital C∗-algebra, and let a and b be two elements in

A. Then

1. a ≤ ‖a‖, [41].

2. If a and b are positive, then so is a+ b. Moreover, ab is positive when ab = ba,

[34].

3. If A is unital and a, b are positive invertible elements in A, then a ≤ b concludes

that 0 ≤ b−1 ≤ a−1, [34].
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4. a ≤ b if and only if −b ≤ −a, and ta ≤ tb for all t ∈ R+, [34].

5. If 0 ≤ a ≤ b, then at ≤ bt for all t ∈ [0, 1], [41].

Definition 1.1.5. Let A and B be two C∗-algebras.

1. A (Banach algebra) homomorphism from A to B is a bounded linear map

ϕ : A −→ B such that ϕ(a1a2) = ϕ(a1)ϕ(a2) for all a1, a2 ∈ A,

2. A ∗-homomorphism from A to B is a homomorphism ϕ such that preserves

adjoints, that is, ϕ(a∗) = ϕ(a)∗ for all a ∈ A. In addition, if ϕ is bijective, it is

called to be a ∗-isomorphism.

3. If ϕ : A −→ B is a linear map between C∗-algebras, it is said to be positive if

ϕ(A+) ⊆ B+.

4. A multiplicative functional is a nonzero homomorphism fromA into C. The

set of all multiplicative functionals on A is called the spectrum of A which is

denoted by σ(A).

Definition 1.1.6. Let a be an element in a C∗-algebra A. The functional â is defined

by

â(τ) = τ(a), ∀τ ∈ σ(A).

We shall now completely determine the commutative C∗-algebras. The Gelfand

theorem presents this result.

Theorem 1.1.10. [34] (Gelfand) If A is a commutative unital C∗-algebra, then the

Gelfand transform

Γ : A −→ C(σ(A)), a 7→ â,
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is an isomeric ∗-isomorphism. Moreover, σ(a) = range(â), and a is invertible if and

only if â never vanishes.

Proposition 1.1.11. Let A be a commutative C∗-algebra and a, b, c ∈ A. If c is

positive and a ≤ b, then ca ≤ cb. And if c is strictly positive and ca ≤ cb, then a ≤ b.

In the proposition 1.1.11, the condition ’c commutes with a and b’ can be instead

of the commutative condition of A.

Proof. The first part will obtain from Proposition 1.1.8 and the commutativity con-

dition of A. For the second part, assume that τ is an arbitrary element in σ(A). By

ca ≤ cb, we have

0 ≤ τ(cb− ca) = τ(c(b− a)) = τ(c)τ(b− a).

Since c is strictly positive, τ(c) > 0. Then τ(b − a) ≥ 0, and a ≤ b by the Gelfand

theorem.

Proposition 1.1.12. Let ϕ : A −→ B be a ∗-homomorphism between unital C∗-

algebras.

1. ϕ(1A) = 1B, [18].

2. For a ∈ A, we have σ(ϕ(a)) ⊆ σ(a), and if ϕ is injective, then σ(ϕ(a)) = σ(a),

[26].

3. The ∗-homomorphism ϕ is positive and increasing, that is, ϕ(A+) ⊆ B+, and if

a1 ≤ a2, then ϕ(a1) ≤ ϕ(a2), [34].

4. If a is invertible, then so is ϕ(a), and ϕ(a−1) = ϕ(a)−1.


