In The Name Of ALLAH, swt

Faculty of Chemistry Department of Applaied Chemistry

M.Sc.Thesis

Title of the Thesis: High-rate biological treatment of Faraman estate industrial wastewater in an up-flow aerobic/anoxic sludge bed bioreactor

Supervisor: Dr. Ali Akbar Zinatizadeh Mrs. Nasrin Rezaei

By: Azar Asadi

January 2012

I am very grateful to God for his guidance and protection during the writing up of the thesis as well as during my studies and every things that I have done,

I would like to thank my supervisour Dr. Zinatizadeh. Without the advice and support of Dr. Zinatizadeh, this thesis would not have been possible. I would like to thank him for his help, encouragement and patience during this time. His excellent guidance has been absolutely essential for the completion of this thesis. From the very beginning, he has treated me as a peer and a friend, and given me the right amount of freedom and guidance. It has been such a joy to work with him. Over two years, I have learned many many things from him -I learned to truly appreciate high quality in research, I learned many technical skills and I even learned from him how to improve my technical writing. I would also like to thank *Mrs Rezaie* for his valuable input and advice.

I would never have started or completed this work if I didn't have a loving family to encourge me and keep me going. Words cannot express my thanks. Thank you very much!

I am particularly grateful to my friends in all labs in the chemistry of faculty.

Abstract

Simultaneous removal of carbon and nutrients (CNP) in a single bioreactor is of high significance in terms of reactor volume and energy consumption. In this study, an up-flow aerobic/anoxic sludge bed (UAASB) bioreactor under two feeding regimes, continuous-fed and batch-fed, was evaluated for the treatment of an industrial estate wastewater with low BOD₅/COD ratio. The batch wise operation of the UAASB is known as sequencing batch reactor (SBR). The process performance in the two regimes was compared. Two numerical variables (retention time and aeration time) were selected to analyze, model and optimize the process. The region of exploration for the process was taken as the area enclosed by retention time (12-36 h) and aeration time (40-60 min/h) boundaries. The experiments were conducted based on a central composite design (CCD) and analyzed using response surface methodology (RSM). In order to analyze the process, twelve dependent parameters as the process responses were studied.

As a result, retention time showed a decreasing impact on the responses in the both hydraulic regimes, UAASB and SBR. The UAASB shows better performance in removal of TCOD, sbCOD, TN and TKN. Total phosphorus (TP) removal was higher where the UAASB was fed in batch wise (SBR). This study showed that the BOD₅/COD ratio was a key factor affecting the systems performance removing the nutrients. Therefore, the performance of the UAASB bioreactor was evaluated under three different BOD₅/COD ratios (1, 0.3 and 0.11).96, 91 and 76 %, respectively for TCOD, TN, and TP removal efficiency could be achieved at BOD₅/COD equals to 1.

Kinetic analysis of the process in the UAASB bioreactor using the experimental results obtained under different HRT (4 and 8 h) and aeration time (40 and 60 min/h) was carried out. Y value was the lowest value (0.161) relative to the values reported in the literature,

implying low biodegradability of the wastewater. K_d , was similar to the values given by the other works (0.039 day⁻¹). K_1 in the first order model was 4.56 day⁻¹.

The constant values in the stover-kincanoon were obtained 9.82 g/l and 8.47 g/l.d, respectively for K_B and U_{max} .

Chapter 1: Introduction	
1-1-Wastewater	•••••
1-2- Wastewater characteristics	
1-2-1- Physical characteristics	
1-2-2-Chemical characteristics	
1-3- Composition of industrial wastewater	
1-4- Needs for treatment industrial wastewaters	
1-5- Environmental regulations of effluent discharge	
1-6- Problem statement	
1-7- Research objectives	
1-8- Scope of study	
1-9- Organization of the thesis	
Chapter 2: Literature review	
2-1- Introduction	•••••
2-2- Biological wastewater treatment	•••••
2-2-1- Metabolism of bacteria	
2-2-2- Biological nutrients removal mechanisms	
2-3- Combined biological treatment processes treating industrial wastewate	ers
2-3-1- Conventional anaerobic-aerobic treatment systems	
2-3-2- Anaerobic-aerobic systems using high rate bioreactors	•••••
2-3-3- Integrated anaerobic-aerobic bioreactors	•••••
2-4-Environmental and operating variables affecting biological process	•••••
2-4-1- Temperature	
2-4-2- pH	•••••
2-4-3- Alkalinity	
2-4-4- Mixed Liquor Suspended Solids (MLSS)	
2-4-5- Hydraulic retention time or volumetric loading	
2-4-6- Sludge residence time or sludge age	
2-4-7- Dissolved oxygen	
2-4-8- Wastewater composition	•••••
2-5- Process Modeling and Optimization	

Table of Contents

2-5-1- Design of Experiments (DoE)	31
2-5-2- Response Surface Methodology (RSM)	32
2-6- Kinetic evaluation	36
2-6-1- Mass balance-based model	36
2-6-2- First-order substrate removal model	38
2-6-3- Second-order substrate removal model	39
2-6-4- Stover-Kincannon model	40
Chapter 3: Material and Methods	
3-1- Chemicals and Reagents	42
3-2- Overall experimental flowchart	43
3-3- Experimental Setup	44
3-4- Preparation of Faraman's industrial estate wastewater (FIW)	47
3-5- Experimental design and mathematical modeling	47
3-6- Bioreactor operation	49
3-6-1- Continuous feeding	49
3-6-2- Batch feeding	51
3-7- Kinetic study	52
3-8- Analytical procedure	52
3-8-1- Basic water quality parameters measurement	52
3-8-2- Determination the chemical oxygen demand (COD)	52
3-8-3- Determination of total suspended solids at 103-105 ^o C	53
3-8-4- Sludge Volume Index (SVI)	54
3-8-5- Total kejeldahl Nitrogen	55
3-8-6- Determination of nitrate	56
3-8-7- Determination of nitrite	57
3-8-8- Determination of phosphorus	58
Chapter 4: Results and Discussion	
Part 1: Process Analysis and Modeling	62
4-1-1- Statistical analysis	63
4-1-2- Carbon removal	65
4-1-3- Nitrogen removal	69
4-1-4- Phosphorus removal	76

4-1-6- Sludge characteristics	79
4-1-7- Process optimization and verification	81
4-1-8- Effect of BOD ₅ /COD ratio	84
Part 2: Kinetic Evaluation	89
4-2-1- Mass balance-based model	90
4-2-2- First order model	92
4-2-3- Second-order model (Grau model)	93
4-2-4- Stover-Kincannon model	94
Chapter 5: conclusion	
Bibliography	99

List of Tables

Tables		Page
Table 1.1	Wastewater characteristics for typical industries	8
Table 1.2	Effluent discharge standards for treated wastewater (Iran)	8
Table 2.1	Biological treatment of different industrial wastewaters in various	
	treatment systems	21
Table 2.2	Integrated bioreactors with physical separation of anaerobic and	
	aerobic zones	22
Table 2.3	Integrated bioreactors without physical separation of anaerobic and	
	aerobic zones	23
Table 2.4	Performance of the conventional SBR for various wastewaters	26
Table 3.1	List of chemicals and reagents	. 42
Table 3.2	Characteristics of Faraman's industrial estate wastewater	47
Table 3.3	Experimental range and levels of the independent variables	48
Table 3.4	Experimental conditions and results	49
Table 3.5	Aeration strategy at the different aeration conditions	51
Table 4.1	ANOVA results for the equations of the Design Expert 6.0.6 for	
	studied responses	64
Table 4.2	The optimization criteria for the responses studied	82
Table 4.3	Verification experiments at optimum conditions	83
Table 4.4	Performance of the bioreactor at different BOD ₅ /COD ratios	85
Table 4.5	Kinetic parameters based on Monod equation for TCOD removal in	n
	UAASB reactor	92
Table 4.6	Kinetic parameters for first-order and Stover- Kincannonmodels fo	or 95
	TCOD removal in the UAASB	

List of Figures

Figures

Page

Fig. 1.1	Discharge of untreated industrial wastewater to a river	2
Fig. 1.2	Fractionation of physical characteristics of wastewater	3
Fig. 1. 3	Fractionation of COD in Wastewater	4
Fig. 1.4	Nitrogenous Constituents	5
Fig. 2.1	Fate of organic matter	14
Fig. 2.2	Representation of a single bacterium showing the relationship between	
	the ingestion, respiration and growth and division processes	15
Fig. 2.3	Sequential steps for biological nitrogen removal	16
Fig. 2.4	Sequential steps for biological phosphorus removal	16
Fig. 2.5	Types of combined anaerobic-aerobic system	19
Fig. 2.6	Type f anaerobic-aerobic systems using high rate bioreactors	20
Fig. 2.7	Type of Integrated bioreactors with physical separation of anaerobic and	
	aerobic zones	22
Fig. 2.8	Type of Integrated bioreactors without physical separation of anaerobic	
	and aerobic zones	23
Fig. 2.9	Operating steps of a SBR	25
Fig. 2.10	Three types of central composite designs for two factors, from left to	
	right: Rotatable, Face-centered, Inscribed (Montgomery, 1991)	34
Fig. 2.11	Central composite faced-centered design with three variables	35
Fig. 3.1	Flowchart of overall experimental activity in (A) continues feeding	
	regime, (B) batch feeding regime	43
Fig. 3.2	Sketch of the experimental set-up	45
Plate 3-1	Laboratory-scale experimental set-up used in this study	46
Fig.4.1	Response surface plots for TCOD removal efficiency: (a) UAASB, (b)	
	SBR	66
Fig. 4.2	Response surface plots for rbCOD removal efficiency: (a) UAASB, (b) SBR	67
Fig. 4-3	Response surface plots for sbCOD removal efficiency: (a) UAASB, (b)	

	SBR	68
Fig. 4.4	Response surface plots for TN removal efficiency: (a) UAASB, (b)	
	SBR	70
Fig.4-5	Response surface plots for denitrification rate: (a) UAASB, (b) SBR	71
Fig. 4.6	Response surface plots for TKN removal efficiency: (a) UAASB, (b)	
	SBR	72
Fig. 4.7	Response surface plots for effluent NO ₃ ⁻ : (a) UAASB, (b) SBR	73
Fig. 4.8	Response surface plot for effluent NO ₂ -in the SBR system	74
Fig. 4.9	Nitrogen fractionation in influent and effluent under different	
	operational conditions studied for: (a) UAASB, (b) SBR	76
Fig. 4.10	Response surface plots for TP removal efficiency: (a) UAASB, (b)	
	SBR	77
Fig. 4.11	Response surface plots for effluent turbidity: (a) UAASB, (b) SBR	79
Fig. 4.12	Response surface plots for SVI: (a) UAASB, (b) SBR	80
Fig. 4.13	Response surface plots for settling velocity: (a) UAASB, (b) SBR	81
Fig. 4.14	Overlay plots for the optimal region: (a and c) UAASB, (b and d)	
	SBR	84
Fig. 4.15	Process performance of the systems studied at aeration time (a_1-h_1)	
	60/60 and (a ₂ -h ₂) 40/60	88
Fig. 4. 16	Estimation of the yield coefficient of biomass (Y) and bacteria decay	
	rate (k _d)	90
Fig. 4. 17	Estimation of the Substrate utilization rate (k) and Half-velocity	
	constant (K _s)	91
Fig. 4. 18	Estimation of the Substrate utilization rate (k) and Half-velocity	
	constant (K _s)	92
Fig. 4. 19	First-order kinetics model plot for TCOD removal	93
Fig. 4. 20	Second-order kinetics model plot for TCOD removal	93
Fig. 4. 21	Stover- Kincannon model plot for TCOD removal	95

Chapter 1

Introduction

1-1-Wastewater

Waste water is any water that has been adversely affected in quality by anthropogenic influence. It comprises liquid waste discharged by domestic residences, commercial properties, industry, and agriculture and can encompass a wide range of potential contaminants and concentrations. In the most common usage, it refers to the municipal wastewater that contains a broad spectrum of contaminants resulting from the mixing of wastewaters from different sources. If untreated, and discharged directly to the environment, the receiving waters would become polluted and water-borne diseases would be widely distributed.

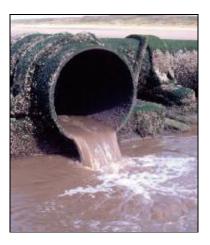


Figure 1-1. Discharge of untreated industrial wastewater to a river

1-2- Characteristics of wastewater

1-2-1- Physical characteristics

The principal physical characteristics of wastewater are summarized in Figure 1-2. The total solids in a wastewater consist of the insoluble or suspended solids and the soluble compounds dissolved in water. Between 40 and 65 % of the solids in an average wastewater are suspended. Solids may be classified in another way as well: those that are volatilized at a high temperature (600 °C) and those that are not. The former are known as volatile solids, the latter as fixed solids. Usually, volatile solids are organic [1].

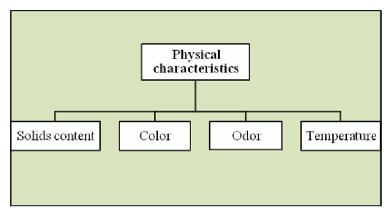


Figure 1-2. Fractionation of physical characteristics of wastewater

1-2-2- Chemical characteristics:

Over the years, a number of different tests have been developed to determine the organic content of wastewaters. Laboratory methods commonly used today to measure gross amounts of organic matter in wastewater include (1) biochemical oxygen demand (BOD), (2) chemical oxygen demand (COD) and (3) total organic carbon (TOC). Fractionation of COD in wastewater based on biodegradability is shown in Figure 1-3.

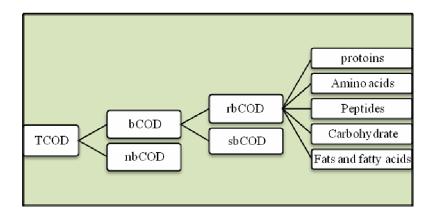
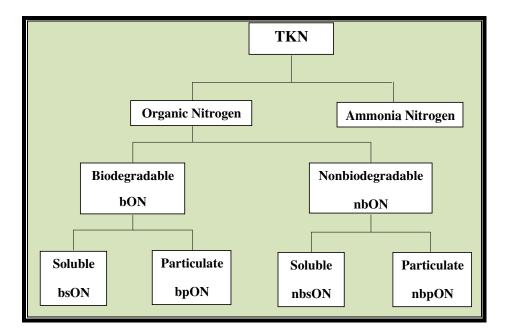



Figure 1-3. Fractionation of COD in Wastewater

The principal chemical tests include free ammonia, organic nitrogen, nitrites, nitrates, organic phosphorus and inorganic phosphorus [1]. Nitrogen and phosphorus are important because these two nutrients are responsible for the growth of aquatic plants. The excessive accumulation of nutrient (N, P) discharge to surface water can pose serious ecological problems that affect the health of aquatic life and consequently that of human and animals[2].

Therefore, Nutrient removal from wastewater is of vital importance as the discharge standards have been more stringent. Nitrogen in raw wastewater is typically comprised of ammonia and organic nitrogen. Generally, there is little or no oxidized nitrogen present (nitrite or nitrate). The combination of ammonia, which is an inorganic form of nitrogen, and the organic nitrogen, is the Total Kejeldahl Nitrogen (TKN). The fractionation of TKN in the wastewater is shown in Figure1-4.

Figure 1-4. Nitrogenous Constituents

The TP concentration is comprised of both inorganic and organic forms. The inorganic forms, which are soluble, include orthophosphate and polyphosphates. The orthophosphate form (PO_4^{3-}) is the simplest form of phosphorus and accounts for 70 to 90% of the TP. Organic phosphorus is also contributed by a variety of industrial and commercial sources. Other tests, such as chloride, sulphate, pH and alkalinity, are performed to assess the suitability of reusing treated wastewater and in controlling the various treatment processes. Trace elements, which include some heavy metals, are not determined routinely, but trace elements may be a factor in the biological treatment of wastewater. All living organisms require varying amounts of some trace elements, such as iron, copper, zinc and cobalt, for proper growth [1].

1-3- Composition of industrial wastewater

As industries have been rapidly developing, various kinds of wastewater discharged from the plants include high concentration organics and nutrients. The composition of industrial effluents is characterized by the high structural diversity of constituents and their high concentration level. Industrial wastewaters may be a severe hazard to receiving waters and their plants and fauna. In Table 1-1 a list of wastewater characteristics for typical industries is presented. The major problem associated with the biological treatment of industrial wastewater is non and slowly biodegradable fraction of COD which inhibits the treatment performance of the bioreactors. BOD₅/COD ratio constitutes a good measure of the biodegradability of a wastewater and contaminants with a ratio of BOD₅/COD \geq 0.4 are generally accepted as biodegradable [3]. From a review, the BOD₅/COD ratio for industrial estate wastewaters is varied from 0.17 to 0.74 [4].

1-4- Needs for treatment industrial wastewaters

Industry views wastewater treatment as an imposed necessity which it employs when it is compelled to, especially when wastewater's effect on the receiving watercourse is readily visible or when public approval and claim will be gained for the expenditure and effort.

Industry should attempt to treat its wastewater at the lowest cost that will yield a satisfactory effluent for the particular receiving stream, which may necessitate considerable study, research, and pilot investigations. Planning ahead will provide time to make appropriate decisions. Conversely, lack of planning on minimizing wastewater treatment costs may mean that a sudden demand for an immediate solution will cause industry to decide to cease production. To prevent any health hazards caused by discharging wastewater to water streams, the wastewater must be treated before discharge. Such treatment should comply with the terms of the legislation defining the characteristics of the effluent discharging in water streams. The concept of planning and development should be based on the criteria to protect land, water resources, aquatic life in streams and

rivers and marine life from pollution and to safeguard public health as a high priority. The environmental inspection on wastewater treatment plants aims to support and strengthen the protection of both the environment and the public health, since the pollution generated from the industrial establishments has a negative impact not only on the environment, but also on the health of the individuals. Therefore, it is noted that most of the procedures that could be implemented by industrial establishments to reduce the negative environmental impacts, will also lead to reducing the effects that present a threat to the health of workers within the plants and the public living in regions affected by the various emissions from the plants.

In this respect, the effectiveness of the inspection on industrial wastewater treatment plants will lead to the protection of the environment and the protection of workers and public health.

1-5- Environmental regulations of effluent discharge

The highly pollution loading on the water resources from various sources (municipal, industrial and agricultural) has been led to the increasingly stringent environmental regulations. The permitting variable effluent standards are applied based on the demands of prevailing environmental circumstances. The effluent discharge standards ordinarily applicable to effluent wastewater are presented in Table 1-2.

Industry	Principal pollutants	BOD ₅ mg/l
Dairy, milk processing	Carbohydrates, fats, proteins	1000 - 2500
Meat processing	SS, protein	200-250
Poultry processing	SS, protein	100-2400
Bacon processing	SS, protein	900-1800
Sugar refining	SS, Carbohydrates	200-1700
Breweries	Carbohydrates, protein	500-1300
Canning fruit etc	SS, Carbohydrates	500-1200
Tanning	SS, protein, sulphide	250-1700
Electroplating	heavy metals	minimal
Laundry	SS, Carbohydrates, soaps, oils	800-1200
Chemical plant	SS, acidity, alkalinity	250 - 1500

 Table 1-1Wastewater characteristics for typical industries (Kiely,1996) [5]

 Industry
 Principal pollutants
 BOD- mg/l

Table 1-2 Effluent discharge standards for treated wastewater (Iran)

No.	Pollutant material	Discharge to surface water(mg/l)	Discharge to well (mg/l)	Agriculture Uses	
		······· (···· ···	((mg/l)	
5	COD	60	60	200	
6	BOD ₅	30	30	100	
7	TSS	40	-	100	
8	TDS	10	10	-	
1	NH 4	2.5	1	-	
2	NO_2	10	10	-	
3	NO ₃	50	10	-	
4	Р	6	6	-	
9	pН	6.5-8.5	5-9	6-8.5	
10	Turbidity(NTU)	50	-	50	

1-6- Problem statement

Due to increasing consciousness about the environment and more severe environmental regulations, treatment of industrial wastewater has been a key aspect of research. The composition of industrial effluents is characterized by diverse in constituents with high concentration level [6]. The complex composition of the industrial wastewater accounts for, in some cases, unpredictable toxicological and ecotoxicological effects[7]. Also, slowly biodegradable chemical oxygen demand (sbCOD) and nutrients content are two problems associated with industrial wastewaters which are not typically considered in conventional treatment processes design.